
Development of 
MQTT-Channel 
Access Bridge 

Jiro Fujita – Creighton University/STAR Experiment

1



STAR Experiment

u Solenoidal Tracker At RHIC

u Relativistic Heavy Ion Collider

u Brookhaven National Laboratory, 
Upton, NY, USA

u EPICS is used for the control for the 
most subsystems from the beginning

u Mostly EPICS 3.14, but some in older 
version…

u Control & Monitor roughly 40,000 
operating parameters

Image from RHIP Group at UT Austin: http://www.rhip.utexas.edu/

2



MQTT: Message Queue 
Telemetry Transport

u Originally developed by IBM and Eurotech in 1999

u IBM & Eurotech donated MQTT to Eclipse project in 2011

u MQTT v3.1.1 is ISO standard as of 2016 (ISO/IEC PRF 
20922)

u Runs on top of TCP/IP (as well as UDP and ZigBee)

u Relatively simple and easy to write/work with

u Lightweight & low overhead

u Quality of Service

u Nearly Real-Time

u Widely used by Internet of Things (IoT) and other places

u Very different from Channel Access
3



MQTT Concept
u Message Broker

u Acts as a central communication 
point

u Can be authenticated

u Clients

u Publish

u Devices publish specific information/data (topic)

u Subscribe 

u Devices could also subscribe to specific information/data (topic)

u Topic

u Routing information to the broker (e.g. “Status”, “Voltage”, “TPC”, 
“Beamline1”)

u Message

u The “data” that clients publish/subscribes 

u Only in ASCII format

4



MQTT Quality of Service

u MQTT has concept of Quality of Service (QoS) built-in

u QoS0

u It only guarantees a best effort of delivery 

u Essentially, no checking

u QoS1

u Guarantees at least delivered once

u It could be delivered more than once

u QoS2

u Guarantees delivered once and once only

u Safest, but slowest, as requires extra confirmation

Images from HiveMQ: MQTT Essentials
http://www.hivemq.com/blog/mqtt-essentials-
part-6-mqtt-quality-of-service-levels

5



Motivation & Requirements 

u STAR had adapted DAQ/Offline/Slow Control integration 
based on MQTT

u Current Slow Control is based mostly on EPICS since the 
beginning of the Experiment

u Somebody had to write something to bridge EPICS Channel 
Access and MQTT in both direction

u EPICS stays as it is for the existing control systems

6



Motivation & Requirements 
(part 2)

u General concept of what has been 
proposed at STAR Experiment

u Slow Control resides in STAR protected 
network in this diagram

u Send/Receive MQTT messages in JSON

u Receive/Send Slow Control Data in 
Channel Access

Image from “Bridging EPICS and High-Level Services at STAR” 
https://drupal.star.bnl.gov/STAR/comp/db/development/epics_dcs

7



Tools used & rational

u C (or C++)

u This was a request from the DAQ expert to the control group

u Paho Library

u Appears to support C/C++ fairly well

u http://www.eclipse.org/paho

u JSON parser library

u The message content is in JSON format

u https://github.com/json-c/json-c

u Apache ActiveMQ Apollo for the message broker

u The Offline/DAQ integration has already been using Apollo as the message broker

u https://activemq.apache.org/apollo

u MQTT.fx

u To check MQTT status easily from the office computer

u http://mqttfx.org

8



The first prototype…

u Written in about 2 weeks, including setting up the 
broker and MQTT test programs

u No prior knowledge/experience of MQTT 

u Fairly easy to write a program using MQTT

u Two different components

u Publisher — Channel Access to MQTT

u Subscriber — MQTT to Channel Access

u Single Topic (EPICS_CA) is used for now

9



Publisher Component

u Publishes Channel Access data to MQTT broker

u Written in C using Portable Channel Access library

u Sends Channel Access data in MQTT in JSON

u { "PV": "PVname", "Host": "Hostname", "data": "PV value"}
u Host field is needed, as MQTT does not necessary know 

where the data really comes from (not really needed in 
Channel Access)

record(ai, "sysuser:aiExample")
{

field(INP, "sysuser:calcExample.VAL NPP NMS")
field(HOPR, "10")
field(LOPR, "0")
field(HIHI, "8")
field(HIGH, "6")
field(LOW, "4")

...

...
}

{ 
"PV": "sysuser:aiExample", 
"Host": "epicsIOC1", 
"data": "10 "
}

sysuser:aiExample.VAL 10

EPICS 
IOC

Channel 
Access

MQTT 
Broker

MQTT

Publisher brigde



Subscriber Component

u Subscribes data from MQTT broker to EPICS IOC

u Written in C using Portable Channel Access library

u Receives MQTT in JSON, broadcasts in Channel Access

u { "PV": "PVname", "Host": "Hostname", "data": "PV value"}
u Host field is needed, as MQTT does not necessary know 

where the data really comes from (not really needed in 
Channel Access)

sysuser:aiExample.VAL

record(ai, "sysuser:aiExample2")
{

field(HOPR, "10")
field(LOPR, "0")
field(HIHI, "8")
field(HIGH, "6")
field(LOW, "4")

...

...
}

{ 
"PV": "sysuser:aiExample", 
"Host": "epicsIOC1", 
"data": "10"
}

11

EPICS 
IOCMQTT 

Broker

MQTT
Channel Access

Subscriber brigde



Performance Testing

u Testing was done in sending thousands of MQTT data and/or 
Channel Access data per seconds

u Several computers were involved (all in the local network, 
some in different subnet)

u EPICS IOC host computers

u More than one IOC computers were used for testing

u Computer running MQTT bridge programs

u MQTT data sender/receiver computer running simple MQTT 
publisher/subscriber program written in Node.js

u MQTT broker (Apache Apollo) computer in different subnet

u MQTT monitoring computer (aka my office computer)

u not really needed, but convenient to have one

u It appears to withstand both directions at least up to about 
1000 data/second or so

u Not very quantitative measure, as I had no idea how to 
quantify the number easily, as there are many different 
factors involved (computer performance, network speed, etc)

12



Future Plan

u Rewrite with C++ using CAFE from PSI/SLS 

u Possibly easier to write a code in C++ using CAFE than 
portable Channel Access in C

u Fuse publisher and subscriber into one program

u Offline/DAQ group wants use MQTT to view the Slow 
Control status via a web browser (and possibly even 
control in some cases)

u Yet to be tested for real system…

u Code is available upon request

13



Acknowledgement

u US Department of Energy Office of Science

u STAR Collaboration

u Creighton University College of Arts & Science

14


