Supporting the next generation of scientific control systems

Introduction to EPICS V4

Ralph Lange, Spring 2017 EPICS Collaboration Meeting



Preface: What V4 is not

V4 is not a replacement for V3

V4 does not introduce a new IOC database

V4 does not require you to rewrite all your drivers
V4 does not break existing systems

V4 extends V3, and does not require upgrading



Qutline: What’s covered

e \What is V4 and what can | do with it?
e V4 key concepts

o pvData and pvAccess
o pvRequest
o Normative Types

e V3/V4 interoperability
e pvlools
e How to get started with V4

o Resources and modules
e Development and Status



What is V4 and what can | do with it?




What is V4, in six words?

EPICS

is a set of tools, libraries and applications to create a distributed control system

V4 adds structured data to EPICS



What is V4 good for?

e Fix Channel Access problems:
Better array and string handling
e Structured data:
Extending the scope of EPICS from I&C to data acquisition, image processing, and beyond
e Efficient network transfer:
High performance archiving and image transfer
e RPC type services:
Service oriented architecture: archiver, snapshot, database backends

e Complex control:
Communicating with devices (groups of PVs on an IOC) in an always-consistent, transaction type way



V4 fixes a number of problems in V3

e Support for 64bit integers
o 1/8/16/32/64bit integers, signed and unsigned
e Better support for arrays
o No element_count upper limit (fixed and bounded arrays possible)
o Clear distinction between arrays of size 1 and scalars
e Better support for strings
o Arbitrary size
o No fixed limit or need for long string workaround
e Much better support for arrays of strings
o Handles arbitrary number of arbitrary length strings



Structured data

V4 can do everything V3 can do (but better):
Can construct pvData structures analogous to DBR types. For example the
equivalent of a DBR_TIME_DOUBLE would be the structure:

NTScalar

double value

alarm_t alarm
int severity
int status
string message

time_t timeStamp
long secondsPastEpoch
int nanoseconds
int userTag



Efficient network transfer

pVvAccess operations only send deltas on the wire.
So if the value of the structure in the above example is modified to:

NTScalar
double value 8.1
alarm_t alarm
int severity 2
int status 3
string message HIHI_ALARM

time_t timeStamp
long secondsPastEpoch 1460589145
int nanoseconds 588698520
int userTag 0

only changed values (in bold) need be sent, plus a bitset indicating which fields
have changed value.



RPC type services

RPC type services can use structures that are different for every call and different
for put (request) and get (response).
pvData can encode more complex data types like a table:

NTTable
string[] labels [value, seconds, nanoseconds, status, severity]
structure value

double[] value [ 1.1, 1.2, 2.0]
long[] secondsPastEpoch [1460589140, 1460589141, 1460589142]
int[] nanoseconds [ 164235768, 164235245, 164235256]
int[] severity [ 9, 9, 1]

int[] status [ 9, 9, 3]



Complex control

e Possible to create complex structures representing, for example, a detector,
camera driver, file writer or camera plugin

e Can operate on subset of fields for control or monitor whole structure

e With RPC can add “methods” and create distributed objects



V4 key concepts




pvData

e System of memory resident structured data types

o Scalar fields
m integer (1/8/16/32/64 bit, signed and unsigned)
m float (32/64 bit)

m string

m  enum
o Variant (any) and regular (tagged) unions
o Arrays

o  Structured fields (nested structures)

e Separate interfaces for introspection and data

o Client can analyse structure before accessing data
o Helper classes: factories for creating introspection and data structures



pPVAccess

e V4 communication protocol, defined by pvAccess protocol specification
e Client/server architecture, multiple providers per server

e High performance network protocol
o Codec based
o  Pluggable transports
o  Pluggable security

e Designed to provide remote access to, i.e. carry pvData structures
® Successorto Channel Access



pvAccess communication flow

e Client connects to channel (top level pvData structure)

e C(Client creates a request object, specifying the specifics

o Request types: Process, Put, Get, PutGet, Monitor
o May use a subset of the structure
o  More options to control processing, blocking

e Both client and server create containers to hold data

e Client executes the request (multiple times)
o pVAccess transmits only changed parts over the network



pVRequest and pvRequest string

Draft standard

Request to limit operation to part of a structure

Processing options (process, block)

Monitoring options: queue size (deadband, server-side filtering in the future)
RPC: TBD



Normative Types

e Well-defined standard types to aid interoperability
e Defines standard structures for alarm, timestamps, enumerations

e Generic simpler types for PVs
o scalar, scalar array

o enum
o matrix
e Specific, more complex types for services and applications
o table
o array of PVs
o areaDetector image
o histogram
O aggregate



Normative Types - Examples

NTScalar := NTAggregate :=
structure structure
scalar_t value double value
string descriptor :opt long N
alarm_t alarm :opt double dispersion
time_t timeStamp :opt double first
display t display :opt time t firstTimeStamp
control_t  control :opt double last
time_t lastTimeStamp
e Specification of standard, named type dEnl e L
) ) ) double min
e Often choices (field types, field names) string descriptor
e Required and optional fields e L LA
] time_t timeStamp
e Extra fields can be added
e [talics denote definitions (non-terminal terms)

:opt
:opt
:opt
:opt
:opt
:opt
:opt
:opt
:opt
:opt



V3/V4 interoperability




pvaSrv

e pVAccess server running on a regular V3 DB (aka IOC)

e dbPv function:
o Any record.field PV is available as a standard NT structure
o  Zero configuration
e New implementation (QSRV) currently under development

e dbGroup function (under development):.
o  Arbitrary groups of record.field PVs are accessible under a new name as a single structure
o  Configuration: mapping of record.field to pvData structure element
static persistent (at IOC boot time) and/or dynamic volatile (on-the-fly as part of the operation)



V3 / V4 bridging options

e V4 pvAccess client library handles pvAccess and Channel Access:
New clients can connect to V4 and V3 servers
=+ Does not need any change on V3 /0C

e pvaSrv/QSRYV puts a pvAccess server on top of the existing EPICS V3 DB:
New clients can use pvAccess to connect to V3 10Cs
=+ Needs pvaSrv and V4 libraries on V3 10C

e Gateway (under development) handles protocol conversion



pvlools




pvAccess commandline tools

Similar functionality as CA commandline tools:

pvinfo: get server, connection state and introspection data of a channel
pvget: get “value” element (if exists, else the complete structure)

pvget -m: set up monitor subscription

pvput: put data to “value” element

pvlist: list available servers, or available channels on a specific server

® eget: extended get client with NTypes support



How to get started with V4




Resources

e Website on SourceForge: http://epics-pvdata.sourceforge.net
(will move later this year with release of EPICS 7)

e Code on GitHub: https://github.com/epics-base



http://epics-pvdata.sourceforge.net
https://github.com/epics-base

Modules

pvDataCPP/pvDataJava: Implementation of pvData

pvAccessCPP/pvAccessJava: Implementation of pvAccess
normativeTypesCPP/normativeTypesJava: Implementation of Normative Types
pvCommonCPP: Boost shared pointers (for some OSs) and micro-benchmarking
pvaSrv: Adding pvAccess server to existing V3 |OC (C++ only)
pvDatabaseCPP/pvDatabaseJava: Record/Database library for creating V4 servers
pvaClientCPP/pvaClientJava: High-level simplified client library

pvaPy: EPICS V4 for Python library (client and server; wrapping C++ libraries)



Development and status




Software development

e V4 Development Group (since 2012)

o ™4 developers actively involved (lost 2 in 2016)

o Bi-weekly telecon, three face-to-face meetings per year
e Current 4.6.0 release

o Usable (near production quality)
o SNS are beating the bugs out
(unit tests do not cover extreme conditions)

e Next step: EPICS 7 — planned for October 2017
o EPICS Base 3.16 plus EPICS V4 modules

3+4=7



Who is using V4 at this time?

e Diamond/NSLS-II: transferring areaDetector images across the network /

between processes using pvAccess
o Using >90% of physical bandwidth on 10Gb ethernet (no compression)

e NSLS-II: middle-layer services using structured data
o In production: MASAR service for saving/restoring setting snapshots
o  More services planned (channelFinder, archiver, elog interface, ...)

e SNS Beamlines: implementing next generation of controls and data acquisition

e SLAC: re-implementing all high-level physics database access using pvAccess
and middle-layer services

e FHI: using archiver appliance with pvAccess and structured data



Conclusions

e EPICS 7: V4 extends V3 without replacing the existing I0C

e pvData and pvAccess add flexible structures and an efficient network protocol
e Set of well-defined containers for generic clients to handle most applications
e Beyond beta status, first in-production users are happy

e Some important parts (Gateway, PV grouping) are still under development

Thank you...



