
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

Lessons learned implementing a Channel
Access gateway in Python with pyuv

Daniel J. Lauk :: Software Engineer :: Paul Scherrer Institut

EPICS Collaboration Meeting, 2017-05-18, Osaka

• Written in C#

• Running on VMs

− Windows Server 2012R2

− 1 CPU 2 cores

− 2 GB RAM

− 60 GB HDD

• Central configuration through web interface (cached offline by gateway)

− Search locations (like EPICS_CA_ADDR_LIST)

− Access control

• Live monitoring

• Watchdog

• Running 23 gateways in production (some more for testing)

Channel Access gateways at PSI

Seite 2

Live gateway monitoring

Seite 3

• It’s fun

• Problems with the existing gateway: One certain bug…

− Occurs very rarely

− Not reproducible

− Logging everything is not feasible

• Different approach (technology stack, programming language, async.

APIs…)

− Encourage new/different ideas

− Maybe certain bugs will be avoided at all

− Maybe the bugs will be easier to track down

• Last, not least: Learn something

Why write another gateway?

Seite 4

• RFC 1925

• Published April 1st 1996

“Some things in life can never be fully appreciated nor understood unless

experienced firsthand. Some things in networking can never be fully

understood by someone who neither builds commercial networking

equipment nor runs an operational network.”

“It is more complicated than you think.”

https://www.ietf.org/rfc/rfc1925.txt

The Twelve Networking Truths

Seite 5

• Develop a prototype gateway

• Use language of your choice

• No need for production hardening (i.e. leverage pareto principle)

• Only 1 requirement: Must support read operation (i.e. caget)

• Optional: Try supporting multiple clients

The mission, should you choose to accept it…

Seite 6

• Alternatives, that I considered (I’m a language nerd) :

− Rust

− Go (golang)

− Erlang

− Haskell

− F#

• Personal familiarity

− Syntax

− Standard library

− various 3rd party libraries

• Well-known language (in general and at PSI)

• Multi-Platform (just in case)

• Good support (tools, community, documentation)

Why Python?

Seite 7

• pytest

− Write tests in a simple way

− Python file should be called test….py

− Tests are simply functions (no class hierarchy) with name test_...

− Instead of fancy helper methods just use assert

• pylint (static analysis)

− Pedantic (generates lots of error messages and warnings)

− It’s actually right (most of the time)

• yapf (code formatting)

− Takes care of nearly all «unimportant» messages from pylint

− It actually gets formatting right (most of the time)

• flake8 (code complexity analysis)

• conda (virtual python environments)

• pyuv (asynchronous I/O through libuv)

Interesting tools for Python

Seite 8

Conversation without a gateway

Seite 9

Conversation with a gateway

Seite 10

• Using pytest

• Make sure, I understand, how generators work

• Only showing 1 of the tests here (font size)

import pycagw.helpers

def test_id_generator():

"""Test id_generator."""

expected = [4, 6, 8, 10, 12, 4, 6, 8, 10,

12, 4, 6, 8, 10, 12]

for e, a in zip(expected,

pycagw.helpers.id_generator(4, 12, 2)):

assert a == e

So I wrote a test…

Seite 11

• In file pycagw\helpers.py:

• (Docstrings omitted to fit on slide)

def id_generator(start: int=0, max_id: int=0xffffffff,

step: int=1):

next_id = start

while True:

yield next_id

next_id += step

if next_id > max_id:

next_id = start

• But running pytest gives ImportError for pycagw.helpers

…and a module to be tested

Seite 12

Hunh?!

Seite 13

https://media2.fdncms.com/thecoast/imager/bundy-al-bundy/u/zoom/1088729/al_gif-magnum.jpg

• I used one of the two commonly recommended directory layouts:

pycagw/ (project)

README.md

doc/

pycagw/ (package)

helpers.py

tests/

test_helpers.py

• Google to the rescue: Add (empty) __init__.py files in each directory

• Running pytest discovers the tests and reports success!

• Shame on me: I actually knew about __init__.py…

D’oh #1

Seite 14

• Wrote more tests. Made them pass.

• Wrote some basic entry point for running a gateway process.

• Not ready, yet. Just a smoke test.

• But running python pycagw\cli.py gives ImportError on

pycagw.cagw

• Could be a syntax error in the file… but pylint doesn’t complain.

• Let’s double check: Start Python interpreter interactively (REPL)

>>> import pycagw.cli

>>>

…What?! No ImportError???

Then I wanted to run it

Seite 15

Hunh?!

Seite 16

https://media2.fdncms.com/thecoast/imager/bundy-al-bundy/u/zoom/1088729/al_gif-magnum.jpg

• Google to the rescue: Make it a proper package

− Install the package in development mode

− Run python setup.py devel

• OK, now it starts up without ImportError

• It breaks only shortly after that, but that’s fine (only a smoke test)

D’oh #2

Seite 17

• Python type hints (PEP 484)

− Support IDE’s autocomplete feature

− Improve API documentation

− No type checking at runtime

• Generators (yield keyword)

• Building a larger Python system is more involved than I thought

− Directory structure

− Make a proper package

Things learned about Python

Seite 18

• I know rather well…

− How Channel Access works

− Edge cases the gateway needs to cover

− Reusing virtual circuits

− Reusing channels

− Another client request shows up, while gateway is processing one

request

• I tried to get the gateway to work right away.

• I bumped my head for quite a while… and had to step back a bit:

− Start with «only» a caget

− Only 1 PV

− Only 1 IOC

− Only 1 virtual circuit

− Only 1 channel

A lesson in humbleness

Seite 19

My own «caget»

Seite 20

My own «caget»

Seite 21

Seite 22

Divide and conquer

• Three (and a half) stages

− Locate the PV (aka «search»)

− (Create virtual circuit)

− Create channel

− Read PV

Activity Diagram: Handle search

Seite 23

State machine: Pending Search

Seite 24

Activity Diagram: Create Channel

Seite 25

State machine: Pending Channel

Seite 26

State machine: Pending Circuit

Seite 27

• My local development setup:

− Local CA server (in C#) listening on 127.0.0.1:5064

− Local gateway (in Python) listening on 127.0.0.1:1111 and

127.0.0.1:2222

• It all was working just fine the day before, but the next day...

− caget.exe PCTOTO02:INT

� Nothing

− python pycagw\caget.py PCTOTO02:INT

� Search time out

• Change EPICS_CA_ADDR_LIST to contact CA server directly

� Still nothing

• Put breakpoint in Visual Studio in C# CA server library

� Search is being received and processed

Another lesson in humbleness

Seite 28

Hunh?!

Seite 29

https://media2.fdncms.com/thecoast/imager/bundy-al-bundy/u/zoom/1088729/al_gif-magnum.jpg

• I was trying to read PCTOTO02:INT

• caget.exe PCTOTO2:INT works

• python pycagw\caget.py PCTOTO2:INT works

• I should have copy&paste from the server code to the shell prompt

• I changed the name of my server’s PV to foo

D’oh #3

Seite 30

• RFC 1925 was right.

• Pair programming and/or code review helps.

• You need a good test setup for development

− Setting breakpoints in all 3 components (server, client, gateway) helps

− At least be able to adjust debug output levels (on server and client)

• Using asynchronous I/O (pyuv)

− Good: Single threaded � No locks / mutex / semaphores!

− Bad: Callback hell!

• Using Python

− Good: The usual (readable, quick to write, dynamic)

− Bad: Many of my mistakes were based on type mismatches from copy&paste or

refactoring (strong typing and compile step would have helped)

Lessons learned

Seite 31

Seite 32

Wir schaffen Wissen – heute für morgen

Thank you for your

attention!

