第3回 「停止・低速停止・低速不安定核を用いた核分光研究」研究会

超流動へリウム中に植え込まれた原子の超微細構造と 核構造研究への応用

理化学研究所 仁科加速器研究センター 本林重イオン核物理研究室

古川武

Collaborators

松尾由賀利¹, 畠山 温², 伊藤龍浩³, 太田嘉穂³, 藤掛浩太郎³, 福山祥光⁴, 小林 徹¹, 下田 正⁵

¹理研,²東大・総合文化,³明治大・理工,⁴Spring - 8,⁵阪大・理

Contents

- 1)Introduction:超流動へリウム中でのレーザー分光
 - ~核モーメント測定を目指した測定法開発~
- 2)Experiment:超流動ヘリウム中での超微細構造測定
 - ~レーザー・マイクロ波二重共鳴法を用いて~
- 3)Result:超微細構造準位間共鳴スペクトル測定 ~ アルカリ金属¹³³Cs, ^{85,87}Rb ~
- 4) Discussion:核モーメント導出、超微細構造異常項 ~真空中とのズレ、元素・同位体依存性~
- 5)Conclusion

Scientific Motivation

目標:短寿命不安定核の系統的核モーメント測定法開発>

原子核の電磁気モーメント 原子核の構造を強く反映 しかし...

ドリップライン近傍の短寿命不安定核

· 低収量

- ・低純度
- ・低偏極度

→ 核モーメント測定が困難 そこで... ex) β-NMR method

detector

Polarized RI nucleus

detector

Signals from RI

『超流動へリウム中に停止したRI原子のレーザー分光法』

に着目

Hyperfine structure

原子(核外電子系)準位 電子と原子核の相互作用

- ・電荷
- スピン・軌道相互作用Fine structure
- ・スピン・スピン相互作用 (磁気双極子相互作用)
- ·電気四重極相互作用

hyperine structure

Merits in Optical Detection

停止RI原子のレーザー分光

RI beam

他種のRI原子はレーザー光を吸収不可能 目的の核種のみ信号放出 低B.G測定可能

Demerits in Optical Detection

停止RI原子のレーザー分光実験における問題点

・減速、停止、トラップ時の効率

・適応可能な元素の制限

・レーザー散乱光のB.G.

超流動ヘリウム中だと・・・

高密度なHe中に打ち込み

停止したRI原子をすべて観測

高効率でRI原子を捕集可能

超流動ヘリウム中の 特異な原子分光スペクトルを利用 分光実験での問題点を解消

まわりのヘリウム原子が影響

Effect of surrounding He atoms

原子の励起スペクトル in He II(

短波長側にシフト スペクトル幅が拡大

Excitation Spectrum in He II

原子の励起スペクトル in He II (
133Cs atomic spectra in He II

短波長側にシフト スペクトル幅が拡大

emission:中心~892 nm,幅~3 nm

(in vacuum: 894.347nm)

-absorption:中心~876 nm,幅~15 nm

吸収波長 発光波長

Merit in He II

原子の励起スペクトル in He II <u>短波長側にシフト</u> スペクトル幅が拡大

Double Resonance Method

Polarized atoms: Can not absorb circularly polarized laser light.

LIF Intensity 1

 $1 - P_z$

Double Resonance Method

Polarized atoms: Can not absorb circularly polarized laser light.

LIF Intensity 1 - P_z

Spin relaxation in Hell

Hell中の問題点:スピン偏極の緩和速度が未知

Experimental Setup

Double resonance peak in Hell

二重共鳴法を用いて実際に超微細構造を測定:安定核¹³³Cs, ^{85,87}Rb

測定された二重共鳴ピーク

Pressure effect in Hell

Hyperfine coupling constant

		HeII (GHz)	vacuum (GHz)	HeII/vacuum ratio
¹³³ Cs		2.31276(2)	2.29815794	1.00635(1)
Rb	85	1.01702(2)	1.01191092	1.00505(2)
	87	3.43517(4)	3.41734131	1.00522(1)

 $A = \mu_I < H > / I \cdot J$ He II 中の<H>の差

周りのHe原子が原子を押しつぶす 核外電子軌道に影響

Csの受ける摂動 > Rbの受ける摂動

< 1% の増加

<u>Csの変化量 > Rbの変化量</u>

Determination of 85Rb moment

87Rb核の磁気モーメントを参照として85Rb核のモーメントを導出

Determination of 85Rb moment

87Rb核の磁気モーメントを参照として85Rb核のモーメントを導出

$$\mu_{\rm I}^{85\,{\rm Rb}} = g_{\rm I}^{85\,{\rm Rb}} I^{85\,{\rm Rb}} = I^{85\,{\rm Rb}} g_{\rm I}^{87\,{\rm Rb}} \times \frac{A^{85\,{\rm Rb}}}{A^{87\,{\rm Rb}}} = \underline{1.35784(1)} \mu_{\rm N}$$

(ただし、
$$g_{\rm I}^{87\,{\rm Rb}}{\rm I}^{87\,{\rm Rb}}=2.751818\,(2)\mu_{\rm N}$$
を用いた)
実際の核モーメント: $\mu_{\rm I}^{85\,{\rm Rb}}=1.3533515\,(8)\mu_{\rm N}$

- ・核モーメントは目標どおり1%以内の精度で決定可能
- ・わずかなズレ(~0.3%)はhyperfine anomalyなど高次効果を示唆

核外電子波動関数の原子核位置における不均一性と 原子核の核子密度ひろがりに起因する磁気相互作用

Hyperfine anomaly in Hell

Hyperfine anomalyまで考慮に入れると...

$$\mu_{\rm I}^{85\,\rm Rb} = g_{\rm I}^{85\,\rm Rb} \, {\rm I}^{85\,\rm Rb} = {\rm I}^{85\,\rm Rb} \, g_{\rm I}^{87\,\rm Rb} \times \frac{{\rm A}^{85\,\rm Rb}}{{\rm A}^{87\,\rm Rb}} \frac{1}{(1+^{85}\Delta^{87})}$$

In HeII $^{85}\Delta^{87}_{\rm HeII} = 0.3317(7)\%$

% ****

In vacuum

$$^{85}\Delta_{\text{vacuum}}^{87} = 0.3487\%$$

現在、原因を考察中 まわりから受ける圧力による、 電子存在確率の不均一性変化が影響?

原子核半径、密度分布に関する 新しい情報の可能性 ~ 5 %の差

hyperfine anomaly

Conclusion

超流動へリウム中でのレーザー・マイクロ波二重共鳴法 安定核¹³³Cs, ^{85,87}Rbの超微細構造を測定

- ・核モーメントを1%以下の精度で決定可能 RF共鳴を用いれば核スピンも決定可能 理論的には電気四重極モーメントも同時に測定可能
- ・hyperfine anomaly効果も数%の精度で決定可能
 真空中の値と~5%のズレ
 核内核子の密度分布に対する新しい情報?

~ Next Plan ~

- ・HeIIの影響について考察
- ・不安定核ビームを用いた測定
- ・AI, Mg原子の光ポンピング

Optical Pumping of Al atoms

Optical Pumping of Alatoms

Double Resonance Method for RI Beam Experiment

RIビームを用いた実験: Cs同位体などでテスト実験

光検出が可能なビーム強度は?

目標:10cps

(purityは気にしない)

- ・立体角の向上
- ・検出効率の向上その他・・・

Conclusion

超流動へリウム中でのレーザー・マイクロ波二重共鳴法 安定核¹³³Cs, ^{85,87}Rbの超微細構造を測定

- ・核モーメントを1%以下の精度で決定可能 RF共鳴を用いれば核スピンも決定可能 理論的には電気四重極モーメントも同時に測定可能
- ・hyperfine anomaly効果も数%の精度で決定可能
 真空中の値と~5%のズレ
 核内核子の密度分布に対する新しい情報?

~ Next Plan ~

- ・HeIIの影響について考察
- ・不安定核ビームを用いた測定
- ・AI, Mg原子の光ポンピング