SSRI Workshop at Kyoto Univ. CRIB Status and Progress

AVF Upgrade Project
 Low-Energy RIB Separator CRIB
 Possibility

RIKEN RIBF Facility

Low-energy in-flight RI beam separator CRIB

Magnetic Separator Section of CRIB (F0—F2)

- Solid angle: $5.6 \text{ mSr} (75 \text{ mr} \times 75 \text{ mr})$
- Maximum magnetic rigidity:1.28 Tm
- Radius of central orbit: 0.9 Tm

•F0 (target) \rightarrow F1 (dispersive focal plane) Horizontal magnifiction: 0.3 Momentum dispersion: 1.6 m Momentum acceptance: $\pm 7.5\%$ Momentum resolution: $P/\Delta P = 800$

•F0 (target) \rightarrow F2

	(achrom	atic focal	l plane
Magnification			
Horizontal:			1.2
Vertical:			0.5
Momentum disp	persion:	0.00	

Large acceptance for (p,n) reaction p(14N,14O)n at $E/A(^{14}N) = 8.4 \text{ MeV}$ $\Delta \theta$ (¹⁴O) = ±2° $\Delta P/P (^{14}O) = \pm 3.5\%$

Wien Filter Section of CRIB (F2—F3)

Beam Size of ¹⁴O at F3

• Wien Filter -> 100 % ¹⁴O of > 10⁶ aps

Without a degraderSmall spot size

Higher order correction Smaller RI beam spot size !

⁷Be Beam Production at CRIB

; Solar model, first generation stars

Direct Method with RI Beams

RIB intensities		reaction type
10 ⁴ pps	\rightarrow	Resonant scattering w/thick target method eg. ²² Mg+p
10 ⁶ pps	\rightarrow	Rearrangement reactions eg. (α, p) , (α, n) , (d, p) ,
10 ⁸ pps	\rightarrow	$(\mathbf{p},\boldsymbol{\gamma}), (\boldsymbol{\alpha},\boldsymbol{\gamma}), \ldots$

Radioactiv Beams produced by CRIB (A<20)

Secondary Beam	Primary Beam	Reaction	Target (mg/cm2)	Intensity (1/sec)	Purity
⁷ Be ⁴⁺ 8.1 <i>A</i> MeV	⁷Li³⁺ 150 pnA	(p , n)	H ₂ gas (0.67)	3×10 ⁵	100%
¹⁰ ℃ ⁶⁺ 6.1 <i>A</i> MeV	¹⁰ B ⁴⁺ 200 pnA	(p , n)	CH ₄ gas (1.33)	1.6 ×10 ⁵	90 %
¹³ N ⁷⁺ 6.5 <i>A</i> MeV	¹³ C ⁵⁺ 500 pnA	(p , n)	H ₂ gas (0.33)	2×10 ⁵	95 %
¹⁴ 0 ⁸⁺ 6.7 <i>A</i> MeV	¹⁴ N ⁶⁺ 500 pnA	(p , n)	CH ₄ gas (1.33)	1.7×10 ⁶	80 %
¹⁸ F ⁹⁺ 2.7 <i>A</i> MeV	¹⁸ O ⁴⁺ 500 pnA	(p , n)	H ₂ gas (0.67)	1.5×10 ⁵	98%
¹¹ C 3.4 <i>A</i> MeV	¹⁰ B ⁴⁺ 200 pnA	(³ He,np)	³ He gas (0.25)	1.7×10 ⁴	17 %
¹² N 3.9 <i>A</i> MeV	¹⁰ B ⁴⁺ 200 pnA	(³ He,n)	³ He gas (0.25)	2.5×10 ³	3 %
⁸ Li 6.5 <i>A</i> MeV	⁷ Li ³⁺ 330 pnA	(d , p)	D ₂ gas (1.33)	2×10 ⁵	98 %
¹⁷ N 2.0 <i>A</i> MeV	¹⁸ O ⁶⁺ 750 pnA	(⁹ Be, ¹⁰ B)	Be foil (2.5)	1×10 ⁵	25 %

Radioactive Beams Produced by CRIB (A>20)

Secondary Beam	Primary Beam	Reaction	Target (mg/cm ²)	Intensity	Purity
²¹ Na 4.2 A MeV	²⁰ Ne ⁸⁺ 200 pnA	(³ He,np)	³ He gas (0.25)	2.3×10 ⁴	12 % no WF
²² Mg 4.6 <i>A</i> MeV	²⁰ Ne ⁸⁺ 200 pnA	(³ He,n)	³ He gas (0.25)	6.6×10 ³	3 %
²⁵ Al 4.0 A MeV With room-temperature target ! % no WF					
²⁶ Si 4.0 <i>A</i> MeV	²⁴ Mg ⁸⁺ 125 pnA	(³ He,n)	³ He gas (0.25)	3×10 ³	1.5 % no WF
²³ Mg 4.0 <i>A</i> MeV	²⁴ Mg ⁸⁺ 125 pnA	(d , t)	D ₂ gas (0.33)	3.2 ×10 ⁴	12 % no WF
³⁹ Ar ¹⁵⁺ 4.0 <i>A</i> MeV	⁴⁰ Ar ¹¹⁺ 120 pnA	(3He ,α)	³ He gas (1.0)	3.2 ×10 ⁴	20 %

Low-Temperature Production Target

Flow $\leq 100 \text{ lit/min.}$

Low-T target: ⁷Be production test results

- Primary beam: ⁷Li²⁺ 5.57 MeV/u, 2.8 eµA at maximum (The cooled target worked with a heat load of 7.4 W).
- Target H₂ gas thickness:
 - Thickness was measured by ⁷Li beam energy loss.
 - 760 Torr, 8cm, 2.3 mg/cm² ...85K achieved.
- Secondary beam: ⁷Be⁴⁺, 4.0 MeV/u, purity 75% (without degrader/ WF).

 $-2x10^8$ pps was achieved.

Momentum distribution of ⁷Be

• Large momentum spread due to the energy straggling was observed (FWHM=6.4%).

Target thickness reduction

- Target thickness reduction effect (max. 30%) was observed for the 2.7 μ A beam, 2.3 mg/cm² target.
- The effect could be minimized by the circulation (max. 551/min).

In Progress

Ion Source;

- Installation of Super-conducting ECR
 --tuning stage now, will be on-line next spring/summer
- Development of charge breeder IS

AVF cyclotron;

- Redesigning the central region
 - -- redesign the spiral deflector, install it next year
 - => expand the acceleration ability to H=1 and 3 efficient transport through the AVF (increase the beam x~2-3)
- Installed a new grazer-lens
- => better beam transmission and better emitance

CRIB;

- Installed multi-pole element for smaller RI beam size
 - Tuning Liq.N cooling target

Low-Energy RIB intensity to be reached at CRIB

Low-energy in-flight RI beam separator CRIB

• Major part of AVF operation will be available for CRIB (& PA) now on

Joint PAC of CNS and RIKEN Next dead line; 10th of December (2 times a year)

2006 fall collaborations at CRIB; 9 experiments; 27 days Kyushu, Korea, Canada, RIKEN, CNS

2006 Spring collaborations at CRIB; 8 experiments; 20 days

on Nuclear Astrophysics, Nuclear Physics Material Science

How to use the CRIB ?

For further information please contact:

S. Kubono kubono@cns.s.u-tokyo.ac.jp H. Yamaguchi yamag@cns.s.u-tokyo.ac.jp T. Teranishi teranishi@nucl.phys.kyushu-u.ac.jp **Or visit;** N-PAC at http://rarfaxp.riken.go.jp/~miyauchi/alpha/UserGuide/

http://www.cns.s.u-tokyo.ac.jp/crib/crib-intro.html