2006.11.16第3回ssri研究会@京大原子炉研究所

トラップされた 不安定Be同位体の アイソトープシフト測定

中村貴志@理研原子物理

T.Nakamura et al., Phys. Rev. A, accepted for publication

PHYSICAL REVIEW A 74, 1 (2006)

Laser spectroscopy of ^{7,10}Be⁺ in an online ion trap

T. Nakamura,^{1,*} M. Wada,^{1,†} K. Okada,² A. Takamine,^{1,3} Y. Ishida,¹ Y. Yamazaki,^{1,3} T. Kambara,¹ Y. Kanai,¹ T. M. Kojima,¹ Y. Nakai,¹ N. Oshima,^{1,‡} A. Yoshida,⁴ T. Kubo,⁴ S. Ohtani,⁵ K. Noda,⁶ I. Katayama,⁷ V. Lioubimov,⁸ H. Wollnik,⁹ V. Varentsov,¹⁰ and H. A. Schuessler⁸
¹Atomic Physics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
²Department of Physics, Sophia University, Chiyoda, Tokyo 102-8554, Japan
³Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
⁴Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
⁵Institute for Laser Science, The University of Electro-Communicaions, Chofu, Tokyo 182-8585, Japan
⁶Institute of Radiological Science, Inage, Chiba 263-8555, Japan
⁷Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
⁸Department of Physics, Texas A&M University, College Station, Texas 77843, USA
⁹II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany

(Received 29 August 2006)

Radioactive beryllium isotope ions (⁷Be⁺ and ¹⁰Be⁺) that are provided by a projectile fragment separator with ≈ 1 GeV beams, as well as stable isotope ions (⁹Be⁺) are stored and laser cooled in an online ion trap. Their absolute transition energies of the $2s \, {}^2S_{1/2} \rightarrow 2p \, {}^2P_{3/2}$ transition were measured with an accuracy of $\sim 10^{-8}$. In this way isotope shifts of beryllium ions were obtained and the differential mass polarization parameter $\kappa = -0.286 \, 41(70)$ a.u. as well as the $2s \, {}^2S \rightarrow 2p \, {}^2P$ transition energy of an infinitely heavy beryllium ion $h\nu^{\infty} = 0.145 \, 524 \, 290(42)$ a.u. were determined for the first time.

RFイオンガイドから引き出された不安定^{10,7}Be⁺イオンのon-lineトラップ (⁹Be⁺についてはoff-lineでトラップ) 2²S_{1/2}-2²P_{3/2}遷移のレーザー分光 遷移周波数の絶対値測定=アイソトープシフト(IS)測定 ISの理論計算との比較

- ・Be同位体:9=NA100%→Be初のアイソトープシフト測定
- ・⁹Be⁺ 2 ²S_{1/2}-2 ²P_{3/2}: 弱磁場(~0.54 mT)では初精密分光データ → 過去の強磁場(~1.1 T)でのデータとの比較

Isotope Shift (IS)

isotope shift = 同位体間にみられる遷移周波数(原子エネルギー準位)のシフト

	type	origin	effective region	order @Be ⁺ 2 ² S _{1/2} - 2 ² P _{3/2}	
field shift (FS)		nuclear charge distribution	Z ≥ 58	effect ~100 MHz difference ~ 10 MHz (negligible here)	
mass shift (MS)	normal MS (NMS)	reduced mass	Z ≤ 30	effect ~ 100 GHz difference ~ 10 GHz (comparable)	
	specific MS (SMS)	mass polarization (multi-electronic)	2 ≤ Z ≤ 30 (0 for H-like)		

エネルギー準位のMS: 核の質量→∞の準位 ϵ^{∞} に対する有限核質量 M_n の準位

$$\epsilon(M_{n}) = \frac{\mu}{m_{e}} \left(\epsilon^{\infty} + \frac{1}{M_{n}} \left\langle \sum_{i < j}^{N} \mathbf{p}_{i} \cdot \mathbf{p}_{j} \right\rangle \right) = \epsilon^{\infty} - \frac{\mu}{M_{n}} \epsilon^{\infty} + \frac{\mu}{M_{n}} K \qquad \mu = \frac{M_{n} m_{e}}{M_{n} + m_{e}}$$
mass polarization NMS SMS Physical SMS

遷移周波数のisotope shift (実験で測定可能)

state a,b間遷移
$$h\nu_{obs} = \epsilon_{a} - \epsilon_{b} = h\nu^{\infty} - \frac{\mu}{M_{n}}h\nu^{\infty} + \frac{\mu}{M_{n}}\kappa$$

NMS SMS

transition energy of an infinite mass $h\nu^{\infty} = \epsilon_{\rm a}^{\infty} - \epsilon_{\rm b}^{\infty}$

differential mass polarization parameter $\kappa = K_{\rm a} - K_{\rm b}$

同位体間での遷移周波数の差(一般にはこの形で評価)

$$h\nu_{2-1} = h\nu(M_2) - h\nu(M_1) = \left(\frac{\mu_1}{M_1} - \frac{\mu_2}{M_2}\right)(h\nu^{\infty} - \kappa)$$
 difference
BeではISが大きいので困難, $h\nu^{\infty}$ とれの独立導出困難

observed resonance frequencies of Be isotopes

理論計算との比較

 hv^{∞} : transition frequency of an infinite mass k:differential mass polarization parameter

(in atomic unit)	this work experiment	Chung et al. FCPC, RVM (1991,1993) relativistic	Yan et al. Hylleraas (1998)	Yamanaka CI(STO) (1998)
$h v^{\infty}$	0.145 524 290(42)	0.145 530 6(11)	0.145 429 884	0.145 761 9
$h \mathrm{v}^{\infty}$ expt- $h \mathrm{v}^{\infty}$ theo	_	-0.000 006 3(11)	0.000 094 41(4)	-0.000 237 6
К	-0.286 41(70)	-0.287 5	-0.286 76	0.285 26
Kexpt-Ktheo	_	0.001 1(7)	0.000 35(70)	-0.001 15(70)

 $h\nu^{\infty}$: relativistic, etc.高次の補正必要

 κ : Yan et al.の計算が良く合う

LiではYan et al.のrelativistic, QEDその他の補正を含んだ計算と 精密分光実験値よりField Shiftと荷電半径を導出 (PRL96, 033002(2006))

より高精度の測定と理論計算によりBeの荷電半径の導出を計画

Nuclear Charge Radii of ^{9,11}Li: The Influence of Halo Neutrons

R. Sánchez,¹ W. Nörtershäuser,^{1,2} G. Ewald,¹ D. Albers,³ J. Behr,³ P. Bricault,³ B. A. Bushaw,⁴ A. Dax,^{1,*} J. Dilling,³ M. Dombsky,³ G. W. F. Drake,⁵ S. Götte,¹ R. Kirchner,¹ H.-J. Kluge,¹ Th. Kühl,¹ J. Lassen,³ C. D. P. Levy,³ M. R. Pearson,³ E. J. Prime,³ V. Ryjkov,³ A. Wojtaszek,^{1,†} Z.-C. Yan,⁶ and C. Zimmermann²

$$\delta \nu_{\rm IS,exp}^{A,7} - \delta \nu_{\rm IS,MS}^{A,7} = \frac{\text{Ze}^2}{3\hbar} [r_c^2 ({}^{A}\text{Li}) - r_c^2 ({}^{7}\text{Li})] (\langle \delta(r_i) \rangle_{3s} - \langle \delta(r_i) \rangle_{2s})$$

= -1.5661 $\frac{\text{MHz}}{\text{fm}^2} [r_c^2 ({}^{A}\text{Li}) - r_c^2 ({}^{7}\text{Li})],$
(2)

TABLE I. Isotope shifts measured at TRIUMF (this work) and GSI [8] [avg = weighted mean] compared with theoretical mass shifts for ⁷Li-^ALi in the $2s \, {}^{2}S_{1/2} \rightarrow 3s \, {}^{2}S_{1/2}$ transition. Uncertainties for $r_{\rm c}$ are dominated by uncertainty in the reference radius $r_{\rm c}({}^{7}\text{Li}) = 2.39(3)$ fm [9].

Isotope		Isotope Shift, kHz	Mass Shift, kHz	r _c , fm
⁶ Li	TRIUMF	-11 453 984(20)		
	GSI	-11 453 950(130)		
	avg	-11 453 983(20)	-11 453 010(56)	2.517(30)
⁸ Li	TRIUMF	8635781(46)		
	GSI	8 635 790(150)		
	avg	8 635 782(44)	8635113(42)	2.299(32)
⁹ Li	TRIUMF	15 333 279(40)		
	GSI	15 333 140(180)		
	avg	15 333 272(39)	15 332 025(75)	2.217(35)
¹¹ Li	TRIUMF	25 101 226(125) ^a	25 101 812(123)	2.467(37)

^a68 kHz statistical +57 kHz systematic from ac-Stark shift

$$\langle r_{\rm c}^2 \rangle = \langle r_{\rm pp}^2 \rangle + \langle R_{\rm p}^2 \rangle + \frac{N}{Z} \langle R_{\rm n}^2 \rangle + \frac{3\hbar^2}{4m_{\rm p}^2 c^2},\tag{3}$$

FIG. 2 (color online). Experimental charge radii of lithium isotopes (red, \bullet) compared with theoretical predictions: \triangle : GFMC calculations [4,22], ∇ : SVMC model [27,28] ($\mathbf{\nabla}$: assuming a frozen ⁹Li core), \oplus : FMD [26], \bigcirc : DCM [19], \Box and \diamond : *ab initio* NCSM [23,24].

Conclusion

on-line trap ¹⁰Be⁺, ⁷Be⁺ @ He gas cooled off-line ⁹Be⁺ @ laser cooled/He gas cooled

- ・2²S_{1/2}-2²P_{3/2}遷移のレーザー分光
- ・ヨウ素スペクトルとの比較により絶対値測定(~10-8)
- isotope shiftの効果として以下を導出・理論と比較
 differential mass polarization parameter: κ
 transition energy of an infinite mass: hν[∞]
 共鳴周波数の確認=hfsレーザー分光への足掛かり

T.Nakamura, et al., Phys. Rev. A, accepted for publication SLOWRIプロジェクト最初の物理の成果

今後の予定

- ・⁷Be⁺, ¹¹Be⁺: 2 ²S_{1/2}のhfs測定(レーザー・マイクロ波共鳴分光) Bohr-Weisskopf効果の導出→核内磁化分布(価中性子分布)
- ・2 ²S_{1/2}–2 ²P_{1/2} のIS精密測定(レーザー・レーザー二重共鳴分光) 原理的により高精度の測定が可能

レーザーコムにより絶対周波数の高精度測定(~10⁻¹⁰目標) field shiftの導出→核荷電半径(陽子分布) 電磁プローブによる核物質半径測定 2²P_{3/2} ^{2²P_{1/2}}

