SSRI (Nov.16, 2006): 京大炉 事務棟会議室

ガンマ線摂動角相関(TDPAC)による物性研究

Kyoto University, Research Reactor Institute 大久保 嘉高

1. Outline of TDPAC

(Time-Differential Perturbed Angular Correlation)

2. TDPAC experiments at KURRI

- Ferroelectric phase transition of LiTaO₃
- · Local magnetic fields in the Mo layer of Mo/Fe multilayer
- Hopping motion of Ce in graphite
- Hyperfine fields in a protein, mavicyanin

Angular correlation of γ rays for the case of $0 \rightarrow 1 \rightarrow 0$

 $W(\theta) \propto 1 + \cos^2 \theta$

a method for producing a nuclear spin alignment: $P(m) \neq P(m'), P(m) = P(-m)$

TDPAC for the case of a uniform static magnetic field perpendicular to the detector plane

Interaction Hamiltonian

$$[f' = -\vec{\mu} \cdot \vec{B} + \frac{e Q V_{zz}}{4 I(2I-1)} [3 I_z^2 - I(I+1) + \frac{1}{2} \eta (I_+^2 + I_-^2)]$$

magnetic dipole interaction electric quadrupole interaction
$$\eta = (V_{xx} - V_{yy})/V_{zz}$$

TDPAC for polycrystals

$$W(\theta, t) = \sum_{k=1}^{k} A_{k}(1)A_{k}(2)G_{kk}(t) P_{k}(\cos\theta) \approx 1 + \frac{A_{22}G_{22}(t)}{k : \text{ even}} P_{2}(\cos\theta)$$

Attenuation factor for static interactions

$$\begin{aligned} G_{kk}(t) &= \sum_{\substack{N, \ m_{a}, \ m_{b}}} (-1)^{2 \ l+m_{a}+m_{b}} \begin{bmatrix} I & I & k \\ m_{a}' & -m_{a} & N \end{bmatrix} \begin{bmatrix} I & I & k \\ m_{b}' & -m_{b} & N \end{bmatrix} \\ &\times \ exp[(-i/f_{h})(E_{n}-E_{n}')t] < n \ | \ m_{b} > * < n \ | \ m_{a} > < n' \ | \ m_{b}' > < n' \ | \ m_{a}' > * \end{aligned}$$

	Cha	Characteristics of TDPAC pro					Outline of TDPAC		
	decay mode parent → probe half-life	[π	Intermedia mean life(ı	ate state ns) µ(nm	i) <i>Q</i> (b)	γ ₁ (ke	V) _{Y 2} (keV)	A ₂₂	
1	$^{99}\text{Mo} \xrightarrow{\beta^-} ^{99}\text{Tc}$	5/2+	5.2	+3.291		740	181	+0.10	
	$^{99}Rh \xrightarrow{EC} ^{99}Ru$	3/2+	29.6	-0.284	+0.231	528 353	90 90	-0.19 -0.15	
	$\stackrel{111}{\longrightarrow} Ag \xrightarrow{\beta^{-}} 111Cd$					97	245	-0.13	
1	$\stackrel{\text{IT}}{\stackrel{111\text{m}}{\text{Cd}}} \stackrel{\text{IT}}{\stackrel{111\text{Cd}}{49 \text{ m}}} \stackrel{111\text{Cd}}{111\text{Cd}}$	5/ 2 +	123	-0.7656	+0.77	151	245	+0.18	
	$\frac{EC}{2.8 \text{ d}} 111Cd$					171	245	-0.18	
1	$\frac{\beta^{-}}{2.5 \text{ h}} \stackrel{117}{117} \text{ln}$	3/2+	77.3	+0.938	(-)0.59	90	344	-0.36	
1	$^{140}La \xrightarrow{\beta^{-}} ^{140}Ce$	4 +	5.0	+4.35	0.35	329	487	-0.13	
	$^{181}\text{Hf} \xrightarrow{\beta^-} 181\text{Ta}$	5/2+	15.6	+ 3.29	(+)2.35	133	482	-0.20	

TDPAC measurement system

実験で得られる時間スペクトル

- N:単位時間に崩壊する核の数
- α_i : γ_i の放出確率
- ε_i: γ_iの検出効率
- Ω_i: 立体角
- Δ+:時間スペクトル1チャンネルあたりの時間

偶然同時計数 $N^2 \alpha_1 \alpha_2 \varepsilon_1 \varepsilon_2 \Omega_1 \Omega_2 \Delta t$ 真の同時計数 $N \alpha_1 \alpha_2 \varepsilon_1 \varepsilon_2 \Omega_1 \Omega_2 e^{-t/\tau_N} \Delta t/\tau_N$

真の同時計数/偶然同時計数 = $e^{-t/\tau_N}/N\tau_N$

Ferroelectric phase transition of LiTaO₃

Expected behavior

ion	ionic radius (pm)					
Li+	76					
In ³⁺	80					
Cd ²⁺	95					
O ²⁻	140					

preparation of samples

LiTaO₃ (¹¹⁷Cd(^{111m}Cd))

¹¹¹Cd(←^{111m}Cd)

512

TDPAC spectra for LiTaO₃

axial symmetric electric field gradient

¹¹⁷In (I = 3/2)

$$A_{22}G_{22}(t) = \frac{1}{5} \{1 + 4\cos(6\omega_{Q}t)\}$$

$$\omega_{\rm Q} = \frac{e Q V_{zz}}{4 I (2I-1) \hbar}$$

 $^{111}Cd (I = 5/2)$

$$4_{22}G_{22}(t) = \frac{1}{5} \{1 + \frac{13}{7}\cos(6\omega_Q t) + \frac{10}{7}\cos(12\omega_Q t) + \frac{5}{7}\cos(18\omega_Q t)\}$$

Temperature dependences of V_{zz} (lattice) at ¹¹⁷In, ¹¹¹Cd, and ⁷Li in LiTaO₃

Local magnetic fields in the Mo layer of Mo/Fe multilayer

Also, Mo(0.4nm), Mo(0.7nm), Mo(0.9nm). All are FM systems.

superposed magnetic profile M(x)

Using the TDPAC data, α was determined to be about 2. \rightarrow **RKKY interactions**

Hopping motion of Ce in graphite

Fission fragments produced in the target chamber are transported to the ion source by gas-jet composed of $He-N_2$ mixed gas and PbI_2 aerosol.

dynamic perturbation (Ce³⁺)

static perturbation (Ce⁴⁺)

25

Hyperfine fields in mavicyanin

Mavicyanin: a protein having a molecular weight of about 10,000, contained in zucchini

