NRS/IXS: BL再編とアップグレード 施設での検討状況・計画 NRS/IXS: BLs Restructuring and Upgrade Present status and plan at SPring-8 facility

Yoshitaka Yoda Hiroshi Uchiyama JASRI / SPring-8

第2回 SPRUC BLsアップグレード検討ワークショップ @ SPring-8 February 22, 2020 NRS (Nuclear resonant scattering) upgrade

NRS activities at BL09XU To BL35XU

Yoshitaka Yoda

JASRI / SPring-8

第2回 SPRUC BLsアップグレード検討ワークショップ @ SPring-8 February 22, 2020

NRS利用高度化WG WG for the promotion of NRS research

Coordinator: Y. Yoda Member: Dr. MItsui (BL11XU), Dr. Tamasaku (BL19LXU), Dr. Uchiyama (BL35XU), Prof Seto (user)

Observer: Dr. Yabashi, Dr. Sakurai, Dr. Kimura, Dr. Ohashi, Dr. Baron

Start in .	July			
WG meeting				
1 st	9/3	Present status of the NRS activities		
		Advantage and possible problems at BL35XU		
	9/13	SPRUC NRS meeting		
2 nd	10/1	Future plan of NRS research		
3 rd	11/5	Research fields, spectroscopic methods and instruments		
4 th	12/19	NRS at BL35XU		
		Layout at optics hutch and NRS experimental hutches		
5 th	1/23	Brushing up in detail, Schedule, Efficient operation		

Techniques at BL09XU

Energy domain Mössbauer Spectroscopy

Seto et. al., PRL 1 (2009) 217602

- Time domain Mössbauer Spectroscopy
- Nuclear Inelastic scattering

(Nuclear Resonance Vibrational Spectroscopy)

Seto et. al., PRL 74 (1995) 3828

Quasi-elastic scattering

using gamma-ray time-domain interferometry

Baron et. al., PRL 79 (1997) 2823

Saito et. al., PRL 109 (2012) 115705

Nuclear excitation

Kishimoto et. al., PRL 85 (2000) 1831 Masuda et. al., Nature 573 (2019) 238

Japan, SPring-8, SPrng-8 staff original techniques

Spectroscopies and techniques using NRS

Techniques	Energy width	Information you can get	Target
Synchrotron Mössbauer Spectroscopy (Energy / Time domain)	~ neV	Electronic states	Spintronics, Electrode, Quantum critical phenomena, Earth science etc.
Nuclear Inelastic scattering (NRVS)	~ meV	Vibrational states	Enzyme, Catalyst, Thermoelectric material, Glass, Solid state physics, Earth science etc.
Quasi-elastic scattering using gamma-ray time- domain interferometry	neV ~ μeV	Dynamics	Ion liquid, Ion conducting glass, Rubber, Liquid crystal, Membrane protein
Nuclear excitation	~ feV	Nucleus	Nuclear clock

		Synchrotron Mössbauer Spectroscopy	Nuclear Inelastic scattering (NRVS)	Quasi-elastic scattering using gamma-ray time- domain interferometry	Nuclear excitation etc.
Information you can get		Electronic states (Valance • magnetic order • Coordination etc.)	Vibrational states (Partial PDOS • Sound velocity • Coordination etc,)	Dynamics (Q: 1 ~ 100 nm ⁻¹ ω: nsec – sub-μsec)	
Fundamental Science	Fundamental Physics				Ø
	Quantum critical phenomena (SC)	Ø	0		
	Glass transition		0	Ø	
Material	Spintronics	Ø			
Science	Magnet, Steel	Ø			
	Electrode	Ø	0		
	Thin film device	Ø	0		
	Catalyst		Ø		
	Thermoelectric material		Ø		
	lon liquid, lon conducting glass			Ø	
	Rubber, Liquid crystal			Ø	
Earth science		Ø	Ø		
Life science (Biochemistry)	Enzyme	Ø	Ø		
	Heme protein		Ø		
	Membrane protein			0	

Current status

Intensity hungry

5 ~ 6 days / proposal use of RIKEN long-undulator BL (BL19LXU) 20% open for public RIKEN visiting scientist

Toward SPring-8 II (users society)Nano beam Δ Coherence Δ PolarizationOIntensity is one of the barriers

More than twice flux at ⁵⁷Fe: 14.4 keV Higher flux at ¹⁵¹Eu: 21.5 keV, ¹⁴⁹Sm: 22.5 keV, ¹¹⁹Sn: 23.9 keV More than twice flux at over 76.5 keV such as ¹⁷⁴Yb: 76.5 keV

Blank in the spectra at BL35XU

Expected Flux at BL35XU

Maximum intensity after BL mono. Gap=6.7 mm for 14.4 keV

> @ FE slit size 0.5 mm (v) × 0.8 mm (h) c.f. 0.6 mm × 1.5 mm (BL09XU)

- Improvements of Si crystal cooling required
- Lower heat-load at SPring-8 II

BL09XU : Nuclear Resonant Scattering Beamline (Public Beamline: standard undulator)

High-resolution monochromators and Focusing lens in the Exp. Hutch

Sample in the Exp. Hutch 2

- cryostat
- superconducting magnet
- Furnas
- goniometer

High Resolution Monochromators at BL09XU

Isotope	Eergy (keV)	Reflectiion	Resolution (meV)
¹⁸¹ Ta	6.21	Si311 - Si511 - Si511	10.5
⁵⁷ Fe	14.41	Ge331 – Si975 – Si975	0.8
	14.41	Si511 – Si975 (nested)	2.5
	14.41	Si511 – Si975 (nested)	3.5
¹⁵¹ Eu	21.54	Si422 - Si12 12 8 (nested)	1.7
¹⁴⁹ Sm	22.51	Si422 – Si16 8 8 (nested)	1.6
¹¹⁹ Sn	23.87	Si440 – Si12 12 12 (nested)	1.6
⁴⁰ K	29.83	Si660 – Si22 14 0	2.6
¹²⁵ Te	35.49	a-Al ₂ O ₃ 9 1 -10 68	1.7
¹²¹ Sb	37.13	Si444 – Si 12 12 8	1.7
127	57.62	a-Al ₂ O ₃ 18 7 -25 98	21
⁶¹ Ni	67.41	Si866 – Si866	60

KB mirror for HAXPES used for 14.4 keV at BL09XU

 Beam size
 : $4.2\mu m(V) \times 10.8\mu m(H)$

 Flux (2.5meV)
 : $2.6 \times 10^9 cps$ @14.4 keV

 Throughput
 : 44%

Used for earth science which needs high pressure > 100 GPa.

µm-beam NRS experiments are not so popular at BL09XU c.f. ESRF, APS, PETRA III

BL35XU

BL35XU hutch layout

Upgrade of optics hutch: BL35XU

High resolution monochromators

Nested type

⁵⁷Fe (2.5 meV & 3.5 meV)
⁵⁷Fe (6 meV),
¹⁵¹Eu
¹⁴⁹Sm
¹¹⁹Sn

Channel-cut for High energy isotopes

CRLs

1 dimentional focusing for the thin film Moderate focusing at NRS2

Quick switching between on-line / off-line High throughput

Upgrade of optics hutch: BL35XU

BL09XU : Nuclear Resonant Scattering Beamline (Public Beamline: standard undulator)

High-resolution monochromators and Focusing lens in the Exp. Hutch Sample in the Exp. Hutch 2

- cryostat
- superconducting magnet
- Furnas
- goniometer

Upgrade of experimental hutch NRS1, NRS2: BL35XU

Upgrade of experimental hutch NRS1, NRS2: BL35XU

Quasi-elastic scattering at NRS2

NRVS at NRS2

Upgrade of experimental hutch NRS1, NRS2: BL35XU

Quick switching between different techniques

- Instruments
- Fast electronic circuit
 - effective use of ultra-fast mcs

- High accuracy
- High throughput
 - Work style reform

Measurements control same as at BL09XU (LabVIEW based)

Summary

Upgrade points

(1) Higher intensity is expected.

(2) High flux μ-beam is available not only for ⁵⁷Fe but also for ¹⁵¹Eu, ¹⁴⁹Sm, ¹¹⁹Sn.

(3) High throughput is expected at optics hutch and experimental hutch

Schedule will be presented by Uchiyama-san.

NRS利用高度化WG WG for the promotion of NRS research

Member:

Dr. MItsui (BL11XU) Dr. Tamasaku (BL19LXU) Dr. Uchiyama (BL35XU) Prof. Seto (user)

Observer:

Dr. Yabashi Dr. Sakurai

Dr. Kimura

Dr. Ohashi

Dr. Baron

Engineering support:

Dr. Sugahara