土壌中放射性セシウムのシマミミズへの移行・体内分布・滞留

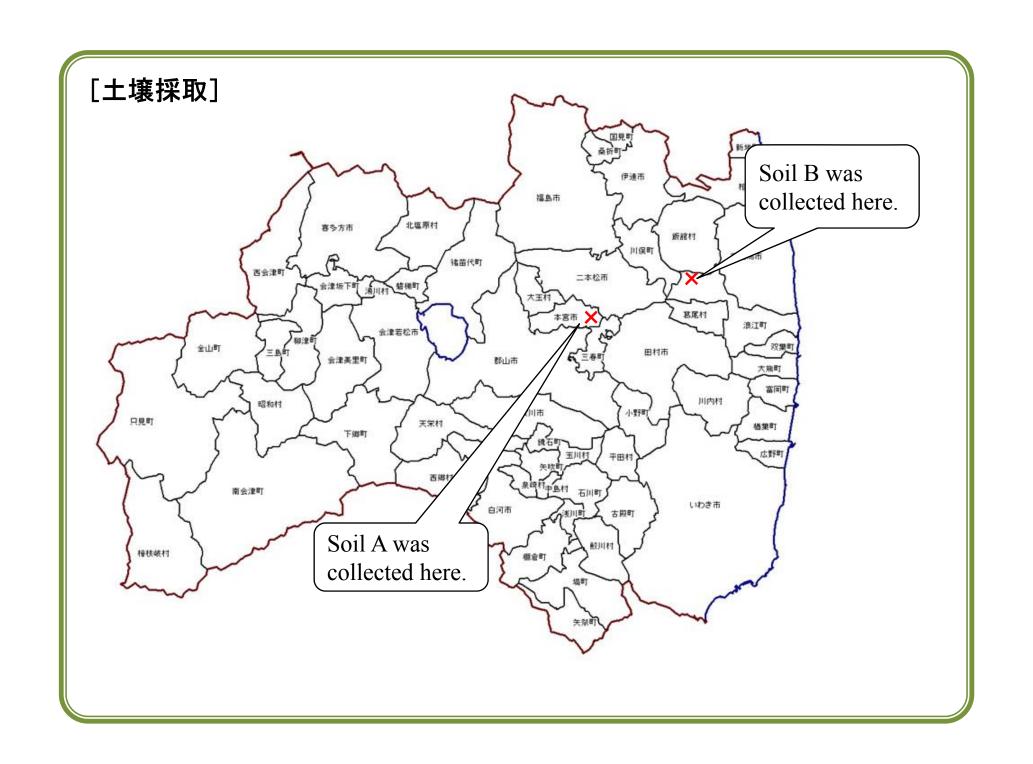
Uptake, distribution and retention of radio-cesium in earthworm cultured in the soil contaminated by Fukushima nuclear power plant accident

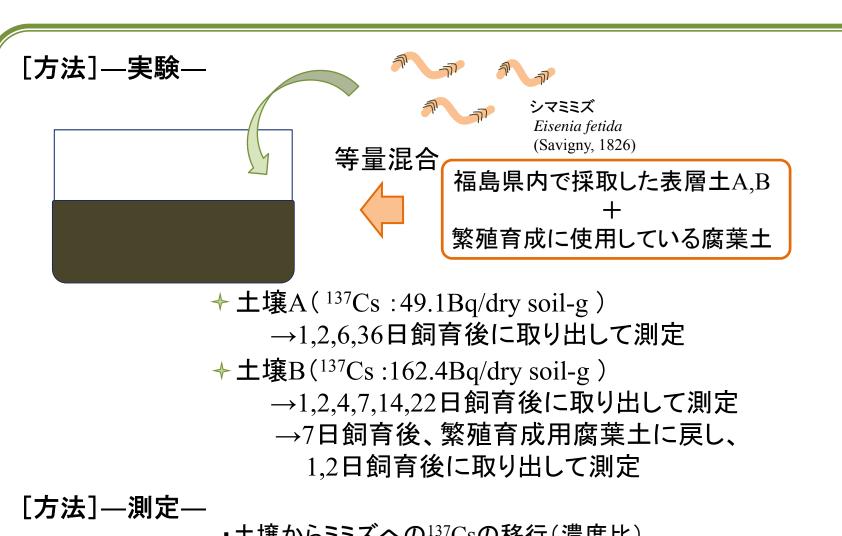
京都大学農学研究科·地域環境科学専攻 放射線管理学·高橋研究室D3 藤原慶子 [はじめに]

東京電力福島第一原子力発電所の事故

食べ物は? 人に対する影響は?

人に直接関わる研究は数多く行われている


人以外の生物への移行や影響については、 関心は持たれてきているものの、まだデータが少ない状況



地中に生息する最も代表的な生物である「ミミズ」に注目!!

137Csの濃度比(ミミズ/dry土壌)、ミミズの代謝、 ミミズ体内の137Csの分布、ミミズの吸収線量

を評価

- ・土壌からミミズへの¹³⁷Csの移行(濃度比)
- ・ミミズの代謝
 - 〉Ge半導体検出器で¹³⁷Cs濃度を測定
- ・放射性セシウムのミミズ体内での分布
 - ➡ イメージングプレート(IP)でオートラジオグラフ(ARG)を作製

[結果および考察]

移行

2回の実験において、ともに濃度比は飼育開始初期に高く、徐々に減少していくことを確認

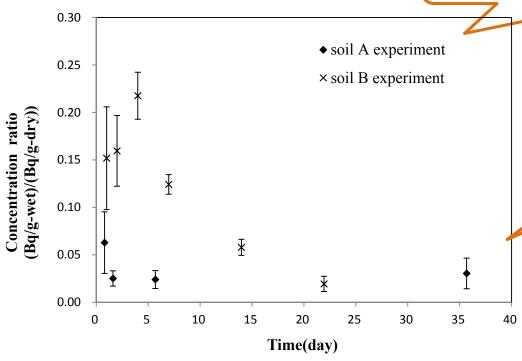
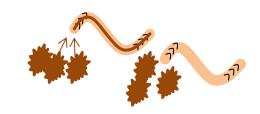



Fig.1 Change of concentration ratios with time

0.02~0.06で落ち着く

空腹なミミズが新しい土に入り 栄養を沢山取ろうとしたため、初期の 濃度比が高くなったと思われる。

濃度比= ミミズの¹³⁷Cs濃度(Bq/wet sample-g)の平均値 飼育に使用した土壌の¹³⁷Cs濃度(Bq/dry soil-g)

滞留

Table1 Metabolism of earthworm

	soil co	ontaining radioa	soil non-containing radioactive			
aanaantration		substances		substances		
concentration (Pa/wet a)	The 1st day	The 2nd day	The 7th day	The 1st day	The 2nd day	
(Bq/wet-g)	6.3 ± 1.3	4.7 ± 1.6	7.0 ± 2.2	ND	ND	

繁殖育成用腐葉土に戻したミミズは、 1日後に¹³⁷Cs濃度がNDとなった

参考:マウスの生物学的半減期(137Cs)は6. 1日 人間は70日

分布

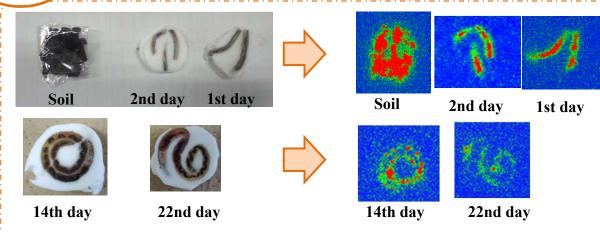


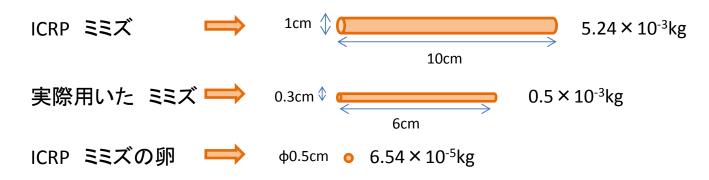
Fig.2 The ARG and photograph of soil and earthworms on 1, 2, 14 and 22 days after culturing.

- ・ミミズの消化管内に土 壌と同程度の濃度で 存在。
- ・体組織実質部においてその濃度は土壌より低濃度であり、局所的な偏在無し。

吸収線量

Table 2. Dose conversion factors (DCFs) for Earthworm and its eggs, and mean DCFs (μGy/day)/ (Bq/kg)

DCFsとは、 Dose Conversion Factor のこと


DCFs	Earthworm		Earthworm egg			Mean		
¹³⁷ Cs -	Internal	External		Internal	External	_	Internal	External
	3.4×10^{-3}	7.3×10^{-3}		2.8×10^{-3}	8.4×10^{-3}	_	3.1×10^{-3}	7.9×10^{-3}
¹³⁴ Cs -	Internal	External		Internal	External		Internal	External
	2.6×10^{-3}	2.0×10^{-2}		2.0×10^{-3}	2.2×10^{-2}		2.3×10^{-3}	2.1×10^{-2}

Assumptions for DCFs: earthworm body mass = 5.24×10^{-3} kg; proportional shape is $10 \times 1 \times 1$ cm; external exposure occurs in a 50-cm-thick volume of source soil.

Assumptions for DCFs for eggs are mass = 6.54×10^{-5} kg; proportional shape is represented by a 0.5-cm diameter sphere; external exposure occurs in a 50-cm-thick volume of source soil.

Mean DCFs is the average DCFs for earthworms and eggs.

ICRP Pub 108で仮定されているミミズは、実際に実験で用いたミミズに比べとても大きい。

なので、中央値を計算に用いることを考えた

吸収線量

Table 3. Absorbed dose rate from internal and external exposure of earthworm to ¹³⁷Cs

		Concentrat	ion of ¹³⁷ Cs	Absorbed dose rate from ¹³⁷ Cs		
DCFs	Experiment	earthworm	soil	Internal	External	Total
		Bq/wet-g	Bq/wet-g	μGy/day	μGy/day	μGy/day
Earthworm	soil A	3.1×10^{0}	1.4×10^{1}	1.1×10^{1}	1.0×10^2	1.1×10^2
	soil B	3.5×10^{1}	6.0×10^{1}	1.2×10^2	4.4×10^2	5.6×10^2
Mean*	soil A	3.1×10^{0}	1.4×10^{1}	9.6×10^{0}	1.1×10^2	1.2×10^2
	soil B	3.5×10^{1}	6.0×10^{1}	1.1×10^2	4.7×10^2	5.8×10^2
Earthworm egg	soil A	3.1×10^{0}	1.4×10^{1}	8.7×10^{0}	1.2×10^2	1.3×10^2
	soil B	3.5×10^{1}	6.0×10^{1}	9.9×10^{1}	5.1×10^2	6.0×10^2

The highest observed concentration of ¹³⁷Cs was used to calculate internal exposure of earthworms. The observed concentration of ¹³⁷Cs in soil was used to calculate external exposure.

ICRPのミミズに対するDCFsをそのまま使うと、 内部被ばくは高い目、外部被ばくは低い目に出る。

また、外部被ばくの設定が50cm厚の土壌線源となっており、

実際の状況よりも過大評価になっている。

実際の状況:放射性セシウムは土の表面10cmの深さまでにほとんど吸着されている

実験の状況:15cmくらいの深さで飼育している

^{*}Mean DCFs are average values for earthworms and eggs.

吸収線量

 134 Csが 137 Csと同量あったと仮定すると、 134 Csと 137 Csから受けるミミズの吸収線量は最大で、合計 $^{1.9}\times 10^3$ (μ Gy/day) であった。(土壌Bでの場合)

[まとめ]

移行→飼育初期に137Cs濃度比が大きく、徐々に下がっていく(0.02-0.06程度に落ち着く)。 代謝→ミミズの代謝は非常に早い。(1日以内)

分布→ミミズの体内でほぼ一様に分布していた。(消化管を除いて)

→消化管内の137Cs濃度は使用した土壌と同じくらいのレベルであった。

吸収線量→最大1.9 × 10³ (µGy/day)であった。

(一番濃度の高かったミミズの値を用い、 134Csが137Csと同量あったと仮定すると)

[今後]

- ・ミミズを飼育する前後で、土壌におけるCsの存在形態が変わるのか? (水への溶け出しやすさなど)
- ·植物への移行(Te)(現在進行中)

ご静聴ありがとうございました

