Relationship between ¹³¹I and ¹³⁷Cs Deposition on Soil in the Territory of Belarus after the Chernobyl Accident.

Vladimir. A. KNATKO, Igor I. IVACHKEVICH, Valentina D. ASIMOVA

Institute of Radiobiology, National Academy of Science of Belarus Zhodinskaya Str., 2, 220141 Minsk, Republic of Belarus.

As a result of the Chernobyl accident a large part of territory of Belarus had been contaminated with radioactive fallout. One of important radionuclides was ¹³¹I which caused significant thyroid exposure in the most affected areas. Direct measurements of ¹³¹I activity in thyroid and determination of ¹³¹I concentration in foodstuffs and air were performed only in limited areas regions of the contaminated territory. Therefore, reconstruction of thyroid doses resulting from ¹³¹I intake is important problem solution of which needs information of ¹³¹I deposition on soil [1].

Izrael [2] noted expediency of using an isotope ratio of ¹³¹I to ¹³⁷Cs content in soil for assessment of ¹³¹I deposition in the areas where measured data on ¹³¹I are absent or limited. The relationship between ¹³¹I and ¹³⁷Cs deposition had been obtained by Mahonko et.al. [3] on the basis of data on ¹³¹I and ¹³⁷Cs activity concentration in more than one hundred soil samples taken in the area located between cities Kiev (Ukraine) and Tula (Russia) (north-eastern direction from Chernobyl). The regression function derived by Mahonko et.al. [3] predicts an approximately linear increase of ¹³¹I content in soil with a growth of ¹³⁷Cs deposition (¹³¹I ~ [¹³⁷Cs]^{0.85}).

The analysis of measured data performed by Orlov et.al. [4] shows that the 131 L/ 137 Cs isotope deposition

ratio R on soil in the European part of the former USSR increases in western regions. In particular the ratio R in the western part of Belarus is larger by 4-5 times than in the eastern part. The inhomogeneous deposition of radioactive dispersed materials makes it necessary to take a regional approach to dose reconstruction. In this connection the relationship between ¹³¹I and ¹³⁷Cs content in deposition on soil in various contaminated areas of Belarus is studied in the present paper. The data for the analysis of ¹³¹I and ¹³⁷Cs activity

The data for the analysis of ¹³¹I and ¹³⁷Cs activity concentration in soil have been taken from the report by Slizov et.al. [5]. Their samples were collected in the southern and the eastern parts of the territory of Belarus during May-June 1986. The location of the areas where samples were taken is shown in Fig. 1. Radionuclide activity was determined by gamma-ray spectrometer with semiconductor Ge(Li)-detector at the Institute of Nuclear Energy of Belarus Academy of Sciences (Minsk). All results of the measurements were given as values of activity on 10th May 1986. The numbers of soil samples taken in the southern and the eastern areas were 139 and 213, respectively.

The southern area includes five administrative districts of the Gomel region. The distance of the farthest west point of this area is about 190 km from Chernobyl. The eastern area is located in the territory of the Gomel and the Mogilev regions, including 6 and

Fig. 1 Location (shaded) wher soil samples had been taken in the Belarus territory: the southern area and the eastern area.

5 administrative districts, respectively. The extent of the eastern area from the south end to the north end is about 110 km. The level of ¹³⁷Cs contamination in soil of the studied areas varies from tens to thousands of kilo-becquerels per square meters and the distribution of ¹³⁷Cs deposition is highly non-uniform. The wide variability of deposition provides an opportunity to investigate the relationship between ¹³¹I and ¹³⁷Cs content in soil over a wide range of contamination.

Relative frequency distributions of ¹³¹I and ¹³⁷Cs activity concentration in soil of areas under consideration are presented in Figs. 2 and 3. The results of performed calculations show that empirical data can be described by log-normal distribution

$$f(x) = \left(\sqrt{2\pi}ax\right)^{-1} \exp\left[-(\ln x - b)^2/2a^2\right]$$
(1)

The parameter a in (1) characterizes skewness of the distribution and is defined as

$$a = [2(InE - InM)]^{1/2},$$

where E is the mean value, and $M=e^{b}$ is the median of the distribution.

According to estimated parameters, the ¹³⁷Cs mean value characterizing the distribution of data obtained for the southern area (westward radioactive trace from Chernobyl - WRT) is larger by two times than the mean value in the case of the eastern area (northern radioactive trace — NRT) (see Figs. 2 and 3). At the same time the ¹³¹I data obtained in the southern and the

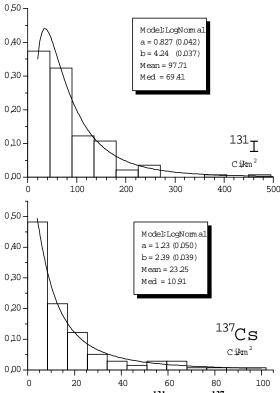


Fig. 2 Distribution of ¹³¹I and ¹³⁷Cs activity concentration in soil of the southern area of Belarus.

eastern areas are characterized by similar mean values. The observed behavior of parameters means that the isotope ratio of ${}^{131}\text{L}/{}^{137}\text{Cs}$ in deposition on soil in the studied areas can be characteristically different.

The empirical data presented in Figs. 2 and 3 were used to derive the relationships between ¹³¹I and ¹³⁷Cs deposition on soil in the studied areas. It is noted that ¹³¹I and ¹³⁷Cs activity concentration in soil are strongly variable. To minimize this variability and elucidate the relationship between ¹³¹I and ¹³⁷Cs concentration, the empirical data were ln-transformed. As the ¹³¹I and ¹³⁷Cs data follow the log-normal distribution, the In-transformed quantities will obey the normal distribution which is more convenient for statistical treatment. Calculation of the relationship between ¹³¹I and ¹³⁷Cs activity concentration have been performed without regard to the contribution of ¹³⁷Cs global fallout which is comparably small (~0.06 Ci/km²) and has not remarkable influence on results. The relationships between ¹³¹I and ¹³⁷Cs deposition are given in Fig. 4. The corresponding regression functions describing dependence of ¹³¹I concentration on ¹³⁷Cs contamination level in soil of the southern and the eastern areas are written as

$$^{131}I = 14.58 \cdot \left({}^{137}Cs \right)^{0.605}$$
 (2)

and



Fig. 3 Distribution of ¹³¹I and ¹³⁷Cs activity concentration in soil of the eastern area of Belarus.

$$^{131}\mathsf{I} = 8.85 \cdot \left(^{137}\,\mathsf{Cs}\right)^{0.627} \tag{3}$$

respectively, where levels of contamination are expressed with activity (Ci/km²) on 10th May 1986.

The similar function was derived from analysis of the joined set of data including measurements for both studied areas (see Fig. 5). In this case the obtained regression equation is

$${}^{131}\mathsf{I} = \mathbf{11.47} \cdot \left({}^{137}\,\mathsf{Cs}\right)^{0.591}.\tag{4}$$

Using the regression equations (2), (3) and (4), the isotopic ratio R can be taken to be

$$\mathbf{R} = \mathbf{C} \cdot \left({}^{137} \, \mathbf{Cs} \right)^{-0.40}, \qquad (5)$$

where the coefficient C is equal 14.15, 8.85 and 11.47 for the southern, the eastern and the joined (southern + eastern) areas, respectively. According to coefficient C values, the isotope ratio R in deposition on soil in the southern area is larger by 1.6 times than in the eastern one.

The relationship (5) predicts that R values increase by a factor of about 4.8 with decreasing ¹³⁷Cs content of soil from 50 to 1 Ci/km². The observed behavior is in agreement with the data of Orlov et al. [4] who show that R values obtained in the western regions of Belarus where the level of soil contamination with ¹³⁷Cs is low (1-5 Ci/km²) are higher by 3-5 times than in the strongly contaminated areas of the south-eastern and the eastern parts of Belarus.

Thus the results of the present study performed for a wide range of soil contamination with ¹³⁷Cs predicts non-linear behavior of ¹³¹L/¹³⁷Cs isotope ratio in the studied areas of Belarus. Use of the obtained non-linear relationship between ¹³¹I and ¹³⁷Cs content in soil may provide a more realistic regional estimation of ¹³¹I deposition and help to improve radiological assessments.

REFERENCES

- Likhatev I.A., Gulko G.M., Sobolev B.G. et al. Thyroid dose assessment for the Chernobyl region (Ukraine): estimation based on ¹³¹I thyroid measurements and extrapolation of the results to districts without monitoring. Radiat. Environ. Biophys., **33** (1994) 149-166.
- 2. Chernobyl: Radioactive Contamination of Environments. Ed. by Y.A. Izrael. Lenigrad, 1990 (In Russian).
- 3. Mahonko K.P., Kozlova E.G., Silantiev A.N. et al. Contamination of Regions with ¹³¹I after ACCIDENT AT THE Chernobyl NPP and Assessments of Upper Doses from ¹³¹I. Atomic Energy, **72** (1992) 377-382 (In Russian).
- 4. Orlov M.Y., Snikov V.P., Hvalenski Y.A., Volokitin A.A. Contamination of the Soil in European Part of Territory of USSR after Accident at the Chernobyl NPP. Atomic energy, **80** (1996) 466-471 (In Russian).

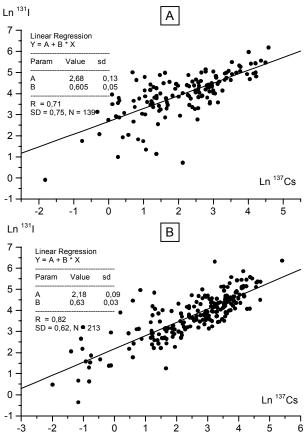


Fig. 4 Relationship between ¹³¹I and ¹³⁷Cs activity concentration (Ci/km²) in soil of the southern (A) and the eastern (B) areas of Belarus.

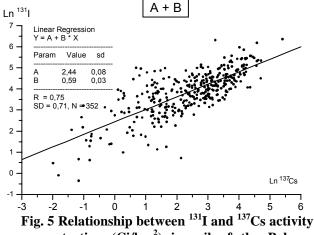


Fig. 5 Relationship between 12 and 12 Cs activity concentration (Ci/km²) in soil of the Belarus territory including both the southern (A) and the eastern (B) areas.

5. Slizov V.P., Ananich P.I., Shekin Y.K. et al. Bank of Data on Isotope Analysis of Soil Samples Taken at Territory of BSSR and Processing Programs. Report of Institute of Nuclear Energy, Academy of Sciences of Belarus, № 4616, Minsk, 1987 (In Russian).