ISSN 1342-0852 KURRI-EKR-15

「福島第一原発事故による周辺生物への影響に関 する研究会」報告書

Proceedings of the Specialists' Meeting on

Effects of the Fukushima-1 Accident on Organisms around the Nuclear Power Plant Site

> 平成28年8月3日~4日 開催 (August 3 - 4, 2016)

> > 編集: 齊藤 剛 福本 学 今中哲二

Edited by : Saito T. Fukumoto M. Imanaka T.

京都大学原子炉実験所 Research Reactor Institute, Kyoto University

はじめに

2011 年 3 月に発生した福島第一原発事故においては大量の放射性物質が環境中に放出 され、周辺環境に大規模な放射能汚染がもたらされた。このような放射能汚染のヒトへの 影響研究は種々の問題をはらみながらも、その関心の高さから比較的大きな規模で行われ てきている。翻って、ヒトの被曝線量と比較した時、低い線量からはるかに高い線量まで の幅広い線量を被曝した周辺生物への被曝影響に関する体系づけられた研究は相対的に遅 れていると言わざるを得ない。このような周辺生物への放射線被曝影響研究は、今回の事 故のヒトおよび環境への影響を考察する時、重要な情報を与えるものと考えられる。

福島第一原発事故後、多くの研究者が自発的に原発事故、放射能汚染による周辺生物への影響を解明するために様々な研究、調査を開始した。これらの研究、調査を行っている 多くの研究者への議論の場の提供を目的として、過去2度にわたり研究会を開催してきた。 2014年の研究会には約40名が参加し12件の報告が、そして2015年の研究会には約70 名が参加し24件の報告があり、有意義な議論が行われた。これまでの研究会の成果を受け、2016年8月3日、4日の2日間、京都大学原子炉実験所専門研究会「福島第一原発事 故による周辺生物への影響に関する研究会」が開催され、74名の参加者を迎え23件の報 告が行われた。本レポートは、2016年に開催された専門研究会のプロシーディングスとして23編の原稿を収録したものである。

これまでの3回の研究会によって異分野の研究者間で多くの情報交換が行われ、お互い の研究分野に対する理解が深まったことは大きな成果であると考えられる。2016年開催の 本研究会においては活発な議論の結果、今後の研究の方向性に関しての共通認識が得られ た。事故から5年が経過し、事故による影響研究の初期段階として節目の年といえる2016 年に開催された本研究会においてこのような成果が得られたことは意義深いといえる。し かし、周辺生物および生態系への福島第一原発事故による影響は非常に複雑である。その ため、起きている現象を集め、まとめ、保存し、多くの研究者がそれらの情報を使用し長 期的に研究を継続しつつ、得られた成果を共有していくことは非常に重要である。本研究 会がそのような研究の一助となれば幸いである。

2016年12月

齊藤 剛

京都大学原子炉実験所

Preface

The Fukushima-1 accident in March of 2011 released a large quantity of radioactive substances and caused significant radioactive environmental contamination. The current research on the effects of the radioactive contamination on humans has numerous problems, although it has been conducted on a relatively large scale because of the great deal of interest in the topic. On the other hand, systematic research on the effects of the radiation around the nuclear power plant site on organisms exposed to a wide range of radiation from low to high doses compared to humans has apparently lagged behind. Understanding the radiation effects on organisms around the nuclear power plant site would provide important information for us to consider regarding the effects of the accident on humans and their environments.

After the Fukushima-1 accident, many scientists voluntarily began studies and surveys to clarify the effects of the accident and of the radioactive contamination on many types of organisms. Two workshops were held as opportunities for the scientists conducting these studies and surveys to discuss the issues. In these workshops, meaningful discussions ensued, about 40 participants attended the 12 presentations in 2014, and more than 70 participants attended the 24 presentations in 2015. Based on the outcomes of first two workshops, the third workshop, entitled "Effects of the Fukushima-1 Accident on Organisms around the Nuclear Power Plant Site," was held on August 3 and 4, 2016, at the Research Reactor Institute, Kyoto University. There were 23 presentations and 74 participants at the third workshop. This paper reports the proceedings of the third workshop.

The three workshops were successful because a great deal of information was exchanged among the various scientists and their understanding of other fields of research increased. Because of the active discussions at the 2016 workshop, a consensus was developed on the future direction for this research. It is truly meaningful that the 2016 workshop was a success because five years had passed since the accident, making 2016 a milestone year as the early stage of research on the effects of the accident.

Despite this progress, the effects of the accident on organisms around the nuclear power plant site and the ecosystem are complex. Therefore, it is important to continue collecting, integrating, and preserving phenomena, and it is vital to continue long-term research projects using these data; sharing obtained results is extremely important. We hope that the 2016 workshop will contribute to the development of future research.

> December 2016 SAITO Takeshi

「福島第一原発事故による周辺生物への影響に関する研究会」報告書

目次

- 1. 低線量放射線の生物影響研究と被災動物線量評価事業 福本 学(東京医科大学)..... 1
- 福島第一原発周辺におけるモミの形態変化の調査 渡辺 嘉人(放射線医学総合研究所).... 13
- 3. 東日本大震災及び福島原発事故後の東日本沿岸における潮間帯生物の種数と棲息密度 堀口 敏宏(国立環境研究所)..... 21
- 5. 福島県浪江町に生息するアカネズミにおける放射線生物影響研究 三浦 富智(弘前大学大学院保健学研究科) 37
- 7. 被災アカネズミにおける精巣の EPMA 分析
 - 大平 拓也 (新潟大学農学部)..... 54
- 9. 福島県内野生ニホンザルへの被ばく影響評価 漆原 佑介(放射線医学総合研究所)... 70
- 10. 放射能汚染地域に生息するコイの健康調査 2013-2015
 鈴木 譲(元東京大学水産実験所)..... 77
- 11. Transcriptomic, proteomic and metabolomic profiling of low-level gamma irradiated rice at Iitate village, Fukushima

Randeep Rakwal (筑波大学体育系)... 94

12.福島の汚染土壌が昆虫の発生に与える影響秋元 信一(北海道大学農学研究院)... 119

iii

13. ヤマトシジミの外部照射実験-経過報告-

阪内 香(琉球大学大学院理工学研究科) 130

14.モンシロチョウにおける内部被曝実験

平良 涉(琉球大学大学院理工学研究科) 132

 15.福島県の帰還困難区域内における黒毛和牛の病理

 平谷
 佳代子(岩手大学農学部).....

 134

16.牛(黒毛和牛)における放射性セシウムの体内動態夏堀 雅宏(北里大学獣医学部)..... 141

18.福島原発事故により放出された放射性核種 (⁹⁰Sr, ²³⁸Pu,²³⁹⁺²⁴⁰Pu)のヒト乳歯への蓄 積に関する研究 第1報

井上 一彦 (鶴見大学探索歯学講座).... 172

19.生体測定による筋肉中放射性セシウムの体内動態推定の可能性 鈴木 正敏(東北大学加齢医学研究所).. 190

20. 東京電力福島第一原子力発電所事故の被災動物線量評価 林 剛平(東北大学加齢医学研究所).... 195

21. テルルとセシウムの土壌から植物への移行係数と移行係数が線量評価に及ぼす影響 藤原 慶子(京都大学原子炉実験所).... 204

22.福島第一原発事故由来土壌中 Cs ホットパーティクルの測定 遠藤 暁(広島大学大学院工学研究院).. 220

23. チェルノブイリ事故による生物影響に関するロシア語文献の紹介今中 哲二(京都大学原子炉実験所).... 233

低線量放射線の健康影響に関する研究と福島被災動物研究

福本 学1,2,・鈴木正敏1・漆原佑介1,3・林 剛平1

1東北大学・2東京医科大学・3放医研

1. 低線量放射線の生物影響における問題点

物理学的に微弱なエネルギーである低線量放射線の生物・人体影響について言われてい ることは、①健康影響として晩発障害である発がんが問題である、②微弱なエネルギーで 大きな生物影響をもたらすのは遺伝情報をコードした DNA が標的であり、特に二本鎖切断 が大きな影響を及ぼす、③放射線の影響が微弱なため、放射線以外の雑音に埋もれてしま い検出が容易でない、④影響が検出される線量として、しきい線量がなく影響の発症頻度 は線量に対して、ある線量まで直線的に比例すると仮定しても科学的知見に矛盾しない。 疑問として、①放射線はがんを誘発するのか、②誘発するとしてしきい線量はないのか、 ③低線量率の反復あるいは慢性被ばくの影響に線量の積算による効果はあるか、④放射線 被ばくに特異的な影響マーカーはあるか、である。

2. 低線量放射線の生物影響研究の材料と手法

健康影響を明らかにするために、どんな疾患を誘発するかという定性的、線量に対する 発症頻度の定量的解析を行う必要がある。低線量放射線影響の特徴は、被ばくしてから影 響が顕性化するまで時間がかかることである。これを説明するために、電離するという物 理的要因である放射線の生物影響は、化学的、生化学的過程を経て細胞、臓器、個体への 影響というように段階を経て拡大するから、とされている。人体のどの臓器のどの細胞が 主に被ばくしたかによって病態が異なるため、影響研究として条件を単純化して解析をし やすくする方向がある。細胞内 DNA の損傷と修復機構の解明が行われている。ヒトへの影 響は直接解析できないため、動物実験が行われてきた。多くがガンマ線による全身照射実 験である。ヒトへの影響を直接理解する手段として、医療被ばくあるいは原子力災害によ ってもたらされた影響解析が行われてきた。ヒトにおける解析は主に疫学調査であるため、 統計的パワーが問題となる。

3. 健康影響研究における問題点

物理的な問題点として、線量、線量率、線質の違いをどう克服するか、である。生物学 的な問題点として、微量放射線の影響を知るための特異的、鋭敏な手法がないため、単純 化して培養細胞への影響を観察するのであるが、それだけでは生体影響は見えてこない。 動物実験では、種、系統、性、月齢に起因する差があるため極めて多数の個体が必要であ る。さらに結果を単純に人体へ敷衍できない。疫学調査では正確な線量評価が困難である。 4. 福島原発被災動物研究

外部被ばくの影響研究でも上述したような多くの障壁があるのであるから、福島原発事 故以降の大きな問題である、内部被ばく研究では、線量評価に化学毒性や核種の集積臓器 特異性を加味する必要があるためにさらに困難である。わが国で独自性が発揮されている 研究成果と我々が行っている被災動物影響研究について述べたい。

放射線:ヒト健康影響を知る難しさ

3

確定的影響と確率的影響の比較

(「緊急被ばく医療「地域フォーラム」テキスト(平成20年度版)より)

ICRP pub 41 (1984)より 4

高自然放射線地域における発がんリスク

線量率〔mGy/時〕

環境研のマウス実験で明らかになった低線量率放射線長期被ばく影響

400日間線量	自然の10倍	原爆被爆者(急性被ばく) 宇宙飛行士(慢性被ばく)	致死(急性被ばく)	文献
寿命	-	メスのみ短縮	短縮	1
腫瘍	_	-	増加	2
抗腫瘍免疫	_	-	低下	3,4
卵母細胞減少/閉経	_	加速	加速	3,5
染色体異常	_	増加	増加	3,6
DNA突然変異	_	-	増加	7
mRNA発現	変化あり	変化あり	変化あり	8,9
タンパク質発現	_	変化あり	変化あり	10
遺伝的影響(F1)				
寿命	_	_	オスのみ短縮増加	3
ゲノム変異	(-)	(増加)		
	影響の検出が 難しいレベル	一部の指標で明確に 影響を検出可能	多くの指標で障害・ 影響は明らか	
1. Radiat Res 160: 3	376 (2003)	6. Radiat Res 171: 290 (2009)	-: 検出されず	

2. Radiat Res 167: 417 (2007)

3. Unpublished results

4. Int J Radiat Biol 87:729 (2011)

5. Radiat Res 173: 333 (2010)

7. Radiat Res 173: 138 (2010)

8. Radiat Res 174: 611 (2010) 9. J Radiat Res 50: 241 (2009)

10. J Radiat Res 49: 661 (2008)

();予備的結果

疫学的に明らかなヒト放射線関連腫瘍

(ほぼ年代順)

	線量率/期間	被ばく様式	主な放射線(源)	誘発腫瘍	
時計文字盤工	低/長	内	α (226, 228Ra)	骨腫瘍	The Radium Girls
トロトラスト症	低/長	内	α (²³² Th)	肝·白血病	
広島∙長崎 被爆者	高/短	外	γ·中性子	白血病・固形が	K CARACTER STATE
関節炎治療	低/長	内	α (²²⁴ Ra)	骨腫瘍	(Memorial University HP)
マヤク労働者	低/長	内/外	α (²³⁹ Pu)	肺·肝癌·骨腫瘍	
ウラン坑夫	低/長	内	α (²²² Rn)	肺癌	
チェルノブイリ	高/短	内/外	γ (¹³⁷ Cs) β(¹³¹ I)	甲状腺癌	
高バックグラウンド 地域	低/長	外>内	α/β (²³⁸ U, ²³² Th)	なし	(Asahi-com.or.jp)
福島第一原発	低/長(?)	外>内(?)	γ (^{134, 137} Cs)	?	

(Harrison JD & Muirhead CR, Int J Radiat Biol 79:1, 2003; Brenner AV et al, Environ Health Perspect, 119:933, 2011.)

外部被ばくと内部被ばく(晩発影響)

核種により体内動態が異なる

トロトラスト誘発肝腫瘍

²³² Th 1.41 x 10 ¹⁰ y	²²⁸ Th 1.913 y					
↓ 228Ac				トロト	ラスト症	非トロトラスト症
²²⁸ Ra 5.76 d	²²⁴ Ra 3.66 d	# α-decay (7 steps) \$\$\blacktriangle\$; \$\blacktriangle\$; \$\blacktriangle\$; \$\$-decay (5 steps)\$\$\$		日本	デンマーク	
-	²²⁰ Rn 55.6 s		胆管細胞癌	43.5	32.3	9.6 ^(%)
	4		血管肉腫	35.6	26.0	0.2
HOROTRAST COLIDIDAL THOMSE DI	²¹⁶ Po 0.15 s	212Po	肝細胞癌	15.4	35.4	81.5
TRADITION OF AND	1 212Pb	²¹² Bi 60.60 m	その他	31.3	6.3	8.6
	10.64 h	36% 208Pb			(Andersson	M et al. Rad Res 1994)

(Andersson M *et al. Rad Res* 1994) (Mori T *et al. Ibid* 1999)

stable

²⁰⁸Tl 3.053 m

<image><image>

放射線発がん、何が問題か

Preston, *Radiat Res* 2007 12 Fukumoto M. *Pathol Int* 64:doi:10.1111/pin.121, 2014

- 1. 内部被ばくと外部被ばく (線量分布)
- 2. 白血病と固形がん
 (発がんの分子機構)
- 3. 細胞死と発がん(不死化) (急性障害と晩発性障害)
- 4. 被ばく細胞とがん化する細胞 (組織幹細胞)
- 5.発がんに必要な線量・線量率 (被ばく線量の積み重ね・線量評価)

トロトラスト症剖検記録

トロトラスト症例の再包埋と整理

内部被ばくによる発がん機構

16

ウシ精子形成、精巣への影響

男性の一時不妊 ウシ1 採取日:2011.9.27(1 空間線量率:0.5 µSv, 土壌放射能濃度: ¹³⁴ Cs 230 kBq/m ² and ウシ2 採取日:2012.1.24 (31! 空間線量率:2 µSv/h 土壌放射能濃度: ¹³⁴ Cs 100 kBq/m ² and ¹	> 0.1 G	2 m ²	Anappendia Anappendia Manappen	A A A A A A A A A A A A A A A A A A A			
雄ウシ	被ばく	¹³⁴ Cs	¹³⁷ Cs	合計 (mGy)	通常バックグラウンドレベルの5倍程度では		
	内部	0.7-1.2	0.4-0.6		生殖細胞に著変を認めない。		
1(196日)	外部	2	0.8	3.9-4.4			
	内部	3.2-6.1	1.8-3.4	(0.11.4			
2(315日)	外部	1.3	0.6	6.9-11.4 (平均	勾一最大)		

Yamashiro H et al. Sci Rep 8(3): 2850, 2013

17

・年間3.5mSv以下の被ばくでもMDAは有意に上昇(Serhatlioglu et al, 2003)

・放射線従事者の抗酸化酵素活性は低い(Klucinski et al, 2008)

Urushihara et al PlosOne 2016 18

アーカイブシステムの構築

画像のデジタル化

Electron Probe Microanalyzer

福島第一原発周辺におけるモミの形態変化の調査

渡辺嘉人 (量子科学研究機構 放射線医学総合研究所 福島再生支援本部)

東京電力福島第一原子力発電所(福島第一原発)の事故により放出された放射性物質か らの放射線による影響は、人だけでなく野生動植物に対しても懸念されている。そうした野生 動植物への影響を把握するため、平成 23 年度より立ち入りが規制されている旧警戒区域や 帰還困難区域で環境省とも連携しながら調査を行ってきた。この調査に基づいて、モミの形 態変化に関して検討した結果について紹介する。

福島第一原発の事故後約4年が経過した2015年1月に、帰還困難区域内の3か所の試験 区、およびそこから離れた地域の1か所の対照区において、森林に自生するモミ個体群の樹 木形態の調査を行った。各試験区にそれぞれ800~1200平方メートルの区画を設けて、区画 内に自生するモミの幼木(高さ40 cm~5m)の全ての個体(各区画でおよそ100~200 個体) を観察対象にした。

帰還困難区域内の空間線量率が特に高い地域に自生するモミ個体群では、空間線量率 が低い地域の個体群と比べて、形態変化の発生頻度が顕著に増加していることが認められ た。また、その発生頻度は空間線量率に依存して高くなっていた。モミは通常は1本の主幹が 垂直に伸びるのに対して、形態変化個体では主幹の欠損に起因した二股様の分枝が特徴的 に認められた。樹木個体ごとに主幹欠損の発生部位を同定すると、帰還困難区域内の試験 区では事故後の 2012 年から 2013 年の伸長部位で主幹欠損の発生頻度に顕著な増加が認 められた。主幹欠損は放射線以外の環境要因や生理的要因などでも発生しうるため必ずしも 放射線に特異的な現象ではないが、過去のガンマ線照射実験やチェルノブイリ原子力発電 所事故でも示されたようにモミを含む針葉樹が一般的に放射線の影響を受けやすい性質が あることを踏まえると、放射線が東電福島第一原発近くの地域におけるモミの形態変化の一 因となっている可能性が示唆された。

今後、形態異常形態変化の発生と事故による放射線被ばくとの因果関係をより明確にす るために、空間線量率が特に高い地域でモミの木が受けた放射線被ばく線量をできるだけ正 確に見積もり、異常発生形態変化の発生の頻度の推移を長期的に見守っていくことに加えて、 実験施設内でモミの木に対して人為的な放射線照射を行って同様な形態異常形態変化が発 生するかを調べていく予定にしている。

13

チェルノブイリ事故当時(1986年)の 周辺樹木の放射線障害 (IAEA 2006)							
Minor damage Zone		Medium damage Zone (120 km²)		Sublethal Zone (38 km²)	Lethal Zone (4 km ²)		
外部γ吸収線量	0.5-1.2 Gy	4	4-5 Gy		10-20 Gy	>80-100 Gy	
針葉樹 (ヨーロッパアカマツ ノルウェートウヒ)	成長低下 生殖能低∖ 形態変化	۶		或長阻害 生殖阻害 葉の萎凋	一部植物体の枯死 成長点部分の芯枯れ	全植物体の枯死 (レッドフォレスト)	
> 0.1 Gy) 障害は観察 斜 はされない 阿	> 0.5 Gy 田 胞遺伝学的 算書	>1 Gy 成長遅 形態障	延 [>2 Gy 生殖障害			
 広葉樹 (シラカバ、ポプラ等)			I I I I I I I I I I I I I I		形態変化	部分的な枝枯れ	

東日本大震災及び福島原発事故後の東日本沿岸における潮間帯生物の種数と棲息密度

堀口敏宏(国立環境研究所)

【背景と目的】2011 年3月11日の東日本大震災に付随して起きた東京電力福島第一原子力発電所(1F)の事故により大量の放射性核種が大気中及び隣接海域に放出された。海洋汚染の観点では、大気経由による 沈着量を上回る量の放射性核種が原子炉冷却水とともに隣接海域に直接漏洩したとみられ、1F周辺の海産 生物は¹³⁷Cs やその他の核種に急性あるいは亜急性被ばく(曝露)した可能性がある。そこで、国立環境研 究所は、放射線医学総合研究所と福島県の協力のもと、2011 年12月14日に1Fの半径 20km 圏内(警戒区 域;当時)の16 地点で潮間帯生物に関する予備調査を行い、それ以降も千葉県から岩手県に至る沿岸各地 の潮間帯で実態把握のために調査を行ってきた。これまでに得られた結果を紹介したい。

【材料と方法】以下のように、予備調査、詳細調査及び定量調査を行った。

1) イボニシ(巻貝)等の棲息状況に関する予備調査(2011年12月)

2011 年 12 月 14 日に 1F の半径 20km 圏内(警戒区域;当時)の 16 地点(高濃度の放射性核種と津波に よる影響を受けた可能性がある場所として選定)で予備調査を実施し、イボニシ(アクキガイ科の肉食性巻 貝)の棲息状況を目視観察するとともに、その他の潮間帯生物(二枚貝、藻食性及び肉食性巻貝、甲殻類等 の節足動物(フジツボ類やヤドカリ類等)など)の棲息状況も目視観察した。

2) 潮間帯の無脊椎動物の種数と肉食性巻貝の棲息密度に関する詳細調査(2012年4月~8月)

2012年4月、7月及び8月に千葉県、茨城県、福島県、宮城県及び岩手県の43地点(このうち、1Fの半径20km圏内(警戒区域;当時)は10地点;その他の33地点は低濃度あるいはごく低濃度の放射性核種と 津波による影響を受けた可能性がある場所として選定)で詳細調査を実施し、潮間帯に棲息する無脊椎動物 の種名を記録するとともに、イボニシとチヂミボラ(ともにアクキガイ科の肉食性巻貝)は観察された全個 体を採集し、採集に要した時間も記録して、各地点の種数と肉食性巻貝の棲息密度(1分間当りの採集個体 数)を算出した。

3) 潮間帯の無脊椎動物の種数と個体数密度等に関する定量調査(2013年5月~6月)

2013年5月及び6月に茨城県(神栖市、日立市)、福島県(富岡町、大熊町、双葉町、南相馬市(いずれ も1Fの半径20km圏内(旧警戒区域)))及び宮城県(石巻市)の7地点(2012年の詳細調査を実施した 地点のうち、1Fからの距離並びに同様の基質(テトラポッドなどの消波堤)であることを考慮した代表地 点)において潮間帯の付着生物(無脊椎動物)を対象とした定量調査を実施した。すなわち、水深帯別(潮 間帯下部、潮間帯及び潮間帯上部)に50cm方形枠内の全ての付着生物を掻き取り、10%中性ホルマリンで 固定した後、種別の個体数と重量を調べた。これにより、各地点の種数と、水深帯別に種別の1m²当り個体 数と重量(それぞれ、個体数密度及び重量密度という)を算出した。

以上により得られたデータについて、回帰分析や分散分析、クラスター解析などにより、統計学的な有意 性を検定した。

【結果と考察】

1) イボニシ(巻貝)等の棲息状況に関する予備調査(2011年12月)

2011 年 12 月 14 日の警戒区域内の 16 地点における予備調査でイボニシ(巻貝)を採集できたのは楢葉町の1 地点(1 個体)のみであった。また、その他の潮間帯生物(二枚貝、藻食性及び肉食性巻貝、フジツボ類やヤドカリ類等の節足動物など)の棲息量も概して少なく、観察されても少数あるいは小型個体であった。 2) 潮間帯の無脊椎動物の種数と肉食性巻貝の棲息密度に関する詳細調査(2012 年 4 月~8 月)

2012 年 4 月~8 月の千葉県から岩手県までの 43 地点での詳細調査により、潮間帯に棲息していた無脊椎動物の種数が 1F に近づくほど統計学的に有意に減少(P<0.001)することが明らかとなり、そのうち、イボ

ニシは広野町から双葉町までの約30kmの範囲で全く採集されなかった。大津波の被害を受けた岩手県、宮 城県及び福島県北部の多くの地点でイボニシが採集されたことから、1F近傍(広野町から双葉町までの約 30kmの範囲)でイボニシが採集されなかったことを津波による影響として説明することはできず、原発事 故によって引き起こされた可能性がある。

3) 潮間帯の無脊椎動物の種数と個体数密度等に関する定量調査(2013年5月~6月)

2013 年 5 月~6 月に茨城県(神栖市、日立市)、福島県(富岡町、大熊町、双葉町、南相馬市)及び宮城県(石巻市)の7 地点において実施した 50cm 方形枠による潮間帯の付着生物(無脊椎動物)に関する定量的な採集調査の結果、潮間帯に棲息する無脊椎動物の種数と棲息量が1F近傍、特に南側の地点(大熊町と 富岡町)で他の地点よりも統計学的に有意に少なく(P<0.05)、また、1995 年の東京電力による同種調査の 結果(注1)と比較しても少ないことが明らかになった。この傾向は、フジツボ類などの節足動物で顕著で あった。

1995年5月に東京電力によって福島県沿岸の20地点で30cm 方形枠により実施された付着生物(無脊椎動物)の枠取り調査の結果(注1)、付着生物の平均個体数密度は7158 個体/m²であり、その内訳は、節足動物(4593 個体, 64.2%),環形動物(179 個体, 2.5%),軟体動物(2348 個体, 32.8%)及びその他(38 個体, 0.5%)であった。震災前(1995年)には福島県沿岸の潮間帯にさまざまな無脊椎動物が棲息しており、節足動物(特にフジツボ類)が優占していたとみられる。したがって、2011年3月の震災・原発事故以降、1F近傍、特に南側の地点で、潮間帯の無脊椎動物の種数と棲息量(個体数密度)が減少したとみられる。その原因は現時点では不明であるが、大津波を受けた他地点での観察結果との比較から、1F 近傍(特に南側)における潮間帯生物の減少が津波のみで引き起こされたとは考えにくく、原発事故による可能性がある。

本研究による観察結果(IF 近傍、特に南側における潮間帯生物の減少)は、震災・原発事故から9ヶ月~2年余りが経過した時点(2011年12月~2013年6月)のものであり、震災・原発事故直後の潮間帯生物の 生残状況を反映していると考えられる。IF 近傍、特に南側における潮間帯生物の減少は津波を主たる原因 として説明することができず、原発事故による影響の可能性があるものの、現時点では明らかでない。また、 原発事故、とりわけ、原子炉冷却水の直接漏洩により海洋環境中に漏れ出た恐れのある有害物質等には、多 種の放射性核種のみならず、ホウ酸やヒドラジンなどの化学物質も含まれていた可能性があり、これらが親 潮の流れで南下した可能性がある。IF の南側の地点で影響がより大きかったとみられるのはそのため、と も考えられる。これらの有害物質等に対する急性あるいは亜急性曝露が事故当時に IF 近傍に棲息していた 潮間帯生物個体の斃死をもたらしたのかどうか明らかにするため、今後、室内実験による検証が必要である。

また、新規加入個体が IF 近傍で観察されない事例(例えば、イボニシ)もあることから、こうした有害 物質等あるいは IF 近傍におけるその他の環境因子に対する慢性曝露の影響も詳細に調べる必要がある。さ らに、有害物質等に対する感受性の種差だけでなく、生物間相互作用(餌生物や繁殖相手などを巡る種内競 争や、被食-捕食などの種間関係)を通じた影響も含めた総体として、IF 近傍における潮間帯生物の減少 が生じた可能性も考えられるため、今後の原因究明に際して、多角的な視点で検証を進める必要があろう。

1F 近傍における潮間帯生物の個体群の時空間変動を明らかにするため、現地調査を継続し、個体数密度の増大(回復過程)のほか、繁殖・産卵行動や幼稚仔の出現と新規加入についても明らかにする必要がある。

(注1)東京電力株式会社. 海産生物等.「福島第一原子力発電所 7・8 号機 環境影響評価書」5.11-1-5.11-14 (東京電力, 2001).

東日本大震災及び福島原発事故 後の東日本沿岸における潮間帯 生物の種数と棲息密度

堀口敏宏 (国立環境研究所)

背景

「環境試料のESR測定による外部被ばく線量評価に関する放射線医学総合研究所 への研究協力」

ESR線量評価:東京電力福島第一原子力発電所事故の発生以来、環境中の放射線 状況についてのモニタリングが関係機関において鋭意行われてきているが、発生後数 日間のデータは極めて限られている。本研究では、震災直後から海岸線近くで活動し、 発電所事故に伴い避難した住民や関係者の外部被ばく線量を評価するために、環境 試料中のフリーラジカルを電子スピン共鳴法(Electron Spin Resonance: ESR)で計 測し、事故当時の空間線量を推定する。また、今後同様の事故が起きた場合にも利 用できるよう、汎用性のある外部被ばく線量評価プログラムを作成する。

日本原子力学会2012春の年会 2012.3 福井市 「潮間帯に生息する巻貝(イボニシ)のESR線量計測に基づく福島県沿岸部での線量 評価」 吉井裕、堀口敏宏、豊田新、鈴木敏和、杉浦紳之 日本保健物理学会第45回研究発表会 2012.6 名古屋市 「潮間帯に生息する巻貝(イボニシ)のESR線量計測による福島県沿岸部の積算線量 の推定」 吉井裕、堀口敏宏、豊田新、鈴木敏和、田嶋克史、杉浦紳之

百开裕、咄口敏厷、壹田新、鈰木敏和、田嶋兄史、杉浦神之

大熊町夫沢水産種苗研究所(1Fの約1km南)

浜通り地方の積算放射線量の推定のための基礎調査

潮間帯調査

大熊町水産種苗研究所地先(第一原発の約1km南)

楢葉町波倉(右奥が福島第二原発)

- ✓ 千葉県~岩手県(警戒区 域を含む)の43地点で潮
 ■ 間帯生物相を調査(2012 年4月、7~8月)
- ✓各地点の種数、種組成、 イボニシの分布密度及び 殻高組成
- ✓ゲルマニウム半導体検出 器によるイボニシとベッコ ウガサガイの軟組織中の 放射性核種分析(¹³⁴Cs, ¹³⁷Cs, ^{110m}Ag)

2013年 付着生物(無脊椎動物)の種数:地点別

2013年5月~6月 50 cm ×50 cm 方形枠調査

2013年 付着生物(無脊椎動物)の個体数

方形枠調査

①潮間帯下部、②潮間帯、③潮間帯上部

2013年 付着生物(無脊椎動物)の湿重量

①潮間帯下部、②潮間帯、③潮間帯上部

事故直後(2011年3月21日~4月4日)に1F近傍・周辺の海 水から検出されたy線核種:³⁸Cl, ⁵⁸Co, ⁸⁴Br, ⁹⁵Zr, ⁹⁹Mo, ^{99m}Tc, ¹⁰⁴Tc, ¹⁰⁵Ru, ¹³¹I, ¹³²I, ¹³⁴Cs, ¹³⁶Cs, ¹³⁷Cs, ¹⁴⁰Ba, ¹⁴⁰La. ¹⁴⁴Pr

131 検出最大濃度: 154,000 Bq/L (3/30 13:55 1F南側) ¹³⁴Cs 検出最大濃度:47,020 Bq/L (同上) ¹³⁷Cs 検出最大濃度:47,470 Bg/L (同上) β線核種:⁹⁰Sr(¹³⁷Csの海水中濃度の約1/10)

⁹⁰Sr 以外の海水中濃度情報なし α線核種:海水中濃度の情報なし

1Fから周辺海域に漏洩した疑いのある化学物質:ホウ酸, ヒドラジンなど

ホウ酸 使用量:約1.7t(ホウ酸として;2011年末現在) ヒドラジン 使用量:約210t(主にSFP;2013年11月現在)

2014年 付着生物(無脊椎動物)の種数:地点別

2014年6月 50 cm × 50 cm 方形枠調査

2014年 付着生物(無脊椎動物)の個体数

2014年 付着生物(無脊椎動物)の湿重量

①潮間帯下部、②潮間帯、③潮間帯上部

イボニシの棲息密度(左) と 産卵の有無(下)

方形枠調査

地点名	1Fからの距 離(km)	2013年	2014年	2015年
宣岡町毛薈近畑	10.5	×	0	×
富岡町富岡漁港 大熊町熊川海水浴場(北) 大熊町水産種苗研究所 亚華町郡山久保谷地	9.5 3.6 1.2	* * * *	× × ×	× × ×
双葉町双葉海水浴場 南相馬市小高区浦居	3.5 17.5	×	×	0? ×

イボニシの産卵 (2005年7月愛媛県)
まとめ

- ✓ 福島第一原発(1F)に近づくにつれ潮間帯の無脊椎 動物の種数が有意に減少(P<0.001)。</p>
- ✓福島県広野町~双葉町の約30kmの範囲でイボニシが採集されず。棲息個体の一掃と再生産の不全を示唆。
- ✓ 1Fの南側(大熊町と富岡町)で潮間帯の無脊椎動物の種数と棲息密度が有意に低値(P<0.05)。
- ✓ 震災・原発事故後の潮間帯生物の棲息状況を反 映:津波のみの影響では説明困難、原発事故によ る可能性。
- ✓原因究明と個体群・群集の回復過程の追跡が必要。

東日本大震災・原発事故後の福島県沿岸域における底棲魚介類の群集構造

児玉圭太・堀口敏宏(国立環境研究所)

【目的】2011年3月の東日本大震災に付随して生じた東京電力福島第一原子力発電所(IF)事故により環境中へ多量の放射性核種が漏出した。海洋へは大気経由の沈着とともに直接漏洩による放射性核種の移入が指摘されている。この影響により、福島県沿岸では一部魚種を対象とした試験操業を除いて漁業が自粛されており、漁獲努力量が著しく低下した状況にある。同海域の魚介類について放射性セシウム濃度のモニタリングは実施されているが、非漁獲対象種を含む底棲魚介類の種組成・密度等の変遷に関する知見は無い。われわれは福島県沿岸 30m 以浅の浅海域における震災・原発事故後の底棲魚介類の群集構造を明らかにするため、2012年10月の予備調査を経て、2013年1月より年2~3回の頻度で環境試料の採取とともに試験底曳き調査を行っている。本報告ではこれまでの調査で明らかとなった群集構造の変化について紹介する。

【方法】2012年10月に第一原発(1F)近傍を含む沖合30kmまでの66定点で底質試料を採取した。また、 北部(相馬市沖)、中部(1F近傍)及び南部(いわき市沖)の各海域に水深10m,20m,30mの定点を設け、 2012年10月、2013年1月、7月、9/10月、2014年1月、7月、2015年1月及び7月に水深30mの定点で 水・底質及び生物(プランクトン、ベントス及び底棲魚介類)試料の採取/採集を行い、水深10mと20m の定点で底棲魚介類試料の採集を行った。水・底質及び魚介類試料はゲルマニウム半導体検出器による測定 に供し、放射性セシウム(¹³⁴Cs及び¹³⁷Cs)濃度を定量した。植物及び動物プランクトンとマクロベントス は同定・計数した。底棲魚介類は餌料板びき網による試験底曳きにより採集した。曳網時間は15~20分と し、魚類、甲殻類、軟体類、棘皮類を採集した。種の同定を行い、魚種別に単位曳網面積当りの個体数・重 量密度を算出した。2013~2015年の各年において冬・夏の平均密度を算出して多変量解析を行い、群集構 造の時空間的な特性を調査した。

【結果】2012 年 10 月の 66 定点の底質調査の結果、放射性セシウム濃度は 1F 北側と南部沿岸で高値(最大 1,650 Bq/kg)を観察し、また、総じて、南部海域で北部海域より高かった。放射性セシウム濃度の底質中鉛 直分布は地点により異なった。底質の TOC、T-N と放射性セシウム濃度との間に相関は認められなかった。 一方、2014年1月までの水深 30m 定点での表層底質中の放射性セシウム濃度は、北部で 10~30 Ba/kg、中 部で 30~50 Bq/kg とほぼ横ばい、南部では 500~100 Bq/kg に低減した。表層の溶存態放射性セシウム濃度 は変動が大きく、底層では10~40 mBq/L で概ね横ばいか微増であった。2013 年7 月までの魚介類(230 検 体)の放射性セシウム検出率は57.6%であり、100 Bq/kg wet 超は板鰓類(サメ・エイ類)と異体類(ヒラ メ・カレイ類)であった。¹³⁷Csの濃縮係数は概ね10²であるが、多くの魚介類試料で溶存態放射性セシウム 濃度の100倍を上回った。これは海水中濃度の低減よりも魚介類組織中での低減の方が緩やかであるためと みられる。一方、クラスター解析により、調査海域は底棲魚介類群集の種組成・密度の違いからA(北10~20m)、 B(中10m)、C(南10m~20m)、D(中20m、北中南30m)の4海域に区分された。A海域は、多様度は高 かったが、密度は他海域と比べ相対的に低い傾向にあった。1F 近傍の B 海域では、小型のエビ類やイカ類 が一時的に多獲されたが、重量密度、種数、多様度は全調査海域の中で最も低かった。C海域では魚類、甲 殻類、頭足類が優占した。D海域は、種数、多様度が最も高く、全ての分類群で密度が高い傾向がみられた。 経年変化をみると、B 海域では魚類、頭足類の密度が増加傾向にあった。C・D 海域では 2013 年に優占し た甲殻類、棘皮類の密度が2014年以降に著しく減少した。

東日本大震災・原発事故後の 福島県沿岸域における 底棲魚介類の群集構造

児玉圭太・〇堀口敏宏

(国立環境研究所)

材料及び方法

- ✓ 2012年10月に第一原発(1F)近傍を含む沖合 30kmまでの66定点で底質試料を採取
- ✓ 2012年10月、2013年1月、7月、9/10月、2014年1 月、7月、2015年1月及び7月に北部(相馬市沖)、 中部(1F近傍)及び南部海域(いわき市沖)の水深 30m以浅の定点で水・底質及び生物(プランクトン、 ベントス及び底棲魚介類)試料を採取/採集
- ✓水・底質及び魚介類試料をゲルマニウム半導体検 出器による測定に供し、放射性セシウム(¹³⁴Cs及び ¹³⁷Cs)濃度を定量
- ✓植物及び動物プランクトンとマクロベントスは同定・ 計数
- ✓ 底棲魚介類は種別の個体数と重量を記録し、一曳 網当り漁獲量(CPUE)を算出し解析

福島沿岸9定点における 魚介類等調査

北部、中部及び南部の水深30m: 水質と底質の採取、プランクトン (植物プランクトン及び大型動物プ ランクトン)、ベントス(マクロベント ス及びメイオベントス)及び魚介類 の各試料を採集

北部、中部及び南部の水深10mと 20m:

魚介類試料を採集

調查回数:

年2~3回(7月、10月、1月) (2014年度以降は、7月と翌年1月 の年2回実施)

背景と目的

 東日本大震災および福島第一原発事故後の 福島県沖合の浅海域(水深10~30m)

地震・津波による環境改変 原発事故に伴う放射性物質や化学物質等の漏洩 漁業自粛による漁獲圧力低下

生物相の実態を把握する必要有り

底棲魚介類群集の種組成および生物量の 時空間的変化(2013~2015年)を調査 投稿準備中のため、公開できません。悪しからず。

▶ 甲殻類および棘皮類が減少傾向

5. 福島県浪江町に生息するアカネズミにおける放射線生物影響研究

○<u>三浦富智</u>¹⁾,中田章史²⁾,藤嶋洋平¹⁾,葛西宏介¹⁾,有吉健太郎³⁾,阿部悠⁴⁾,斎藤幹男⁵⁾, 鈴樹享純⁶⁾,吉田光明³⁾,福本学⁷⁾

¹⁾弘前大学大学院保健学研究科,²⁾北海道薬科大学,³⁾弘前大学被ばく医療総合研究所, ⁴⁾福島県立医科大学,⁵⁾環境科学技術研究所,⁶⁾みちのくファウナリサーチ,⁷⁾東京医科大学

東日本大震災にともなう東京電力福島第一原子力発電所事故により広範囲の地域に放射性物質が放出された。放射性物質汚染地域に生息している野生生物への放射線影響を調査することは生態系に対する影響評価や環境保全にとって極めて重要であり、ヒトへの健康被害の未然防止,リスク管理や生活環境の改善という観点から野生生物への放射性物質の影響を解析することは意義深い。今回は、個体群年齢構成並びに個体成長解析、染色体異常解析、個体被ばく線量の推定について報告する。

【個体群年齢構成並びに個体成長解析】

アカネズミの齢推定を行った結果,2011 年秋期では両地域で捕獲したアカネズミの齢構成を比較すると,齢カ テゴリーwIV (2011 年 2~6 月出生)の個体は青森県で 27.3%を占めるのに対し,福島県では捕獲されなかった。 また 2012 年春期においても齢カテゴリーwV, VI (2011 年 1~10 月出生)の個体が青森県に比べ福島県では有 意に少なかった。いずれの場合も福島第一原子力発電所事故発生時期に出生した個体が少ないという結果を 得た。一方,両地域間では,個体成長率に有意な差が認められなかった。小哺乳類の個体数変動は餌生物及 び生活環境要因によって変動することが知られていることから,本研究における放射性物質汚染と個体数変動 の関係は定かではない。

【染色体異常解析】

アカネズミ脾細胞を用いた染色体解析では,現段階では放射線に特異的な染色体異常である二動原体染色 体(Dic)や環状染色体(ring)などは認められず,帰還困難区域内の空間線量の異なる地域間および対照地域 との間で有意な差は検出されなかった。このことから,福島県浪江町に生息するアカネズミにおいては, Dic や ring などの形成に至るレベルにはなかったと考えられる。しかしながら,Dic や ring などの染色 体異常は不安定型異常であり,その半減期が短いことが知られているため,安定型異常である染色体転 座の解析が必要となるであろう。また,両地域で捕獲されたアカネズミの染色体において染色分体型ギャッ プ(ctg),切断(ctb)および染色分体型切断(csb)等の構造異常が観察された。浪江町で捕獲されたアカネズミ における構造異常を有する細胞の頻度と調査年の間には,強い負の相関が認められた。

【個体被ばく線量の推定】

染色体異常などの放射線生物影響を評価するためには、個体の被ばく線量を推定する必要がある。我々は、 汚染地域に生息するアカネズミの個体被ばく線量の測定法の確立を目的として、空間線量率の異なる地域から 捕獲したアカネズミに蛍光ガラス線量計(PLD)を留置して放逐・再捕獲を行い、個体被ばく線量の測定と被ばく 形態の推定を行った。その結果、アカネズミの被ばく線量は、各捕獲地点の空間線量率や土壌表面線量率に 対して線量率依存的に増加していたが、いずれの地点においても空間線量率や土壌表面線量率から推定され る被ばく線量を下回っていた。そこで、土壌中の鉛直方向の吸収線量を測定したところ、深さ 10cm 地点で地表 の約半分であったことから、アカネズミの生活圏は地下約 10cm 程度と予測される。このことがアカネズミの被ばく 線量が捕獲地の線量を下回る要因であると考えられる。また、PLD の測定値には環境放射線(外部被ばく)とア カネズミの体内に取り込まれた放射性物質(内部被ばく)の値が含まれていると考えられる。これらの割合を調べ るため、非汚染地域で放射性物質汚染地域の個体に PLD を留置し測定したところ、個体被ばく線量の約 5%が 内部被ばくに由来することが判明した。

Hirosaki University, Chromosome Research Group

📕 🛛 Hirosaki University, Chromosome Research Group

Tomisato Miura, Ph.D.

EGS5 を使用したアカネズミの被ばく量推定について

大沼学

国立研究開発法人国立環境研究所、生物・生態系環境研究センター、生態リスク評価・対 策研究室

ICRP は放射線による環境影響を評価する際に適切な 12 種類の動植物、「標準動物及び植物」 を公表した。哺乳類で標準動物に指定されたのは、シカ科およびネズミ科に分類される野 生動物である。また、ICRP は各標準動植物及び植物が放射線を受けた場合に生じる影響に ついて線量率ごとに情報を提供している(誘導考慮参考レベル、Derived Consideration Reference Levels)。シカ科およびネズミ科の動物については、線量率が 0.1 mGy/d 以上 となった場合に放射線による影響が発生する可能性があるとされている。Garnier-Laplace J, et. al. (2011) は、事故後 30 日間における森林性げっ歯類が受けた線量率を 3.9 mGy/d であったと報告している。この線量率を ICRP の誘導考慮参考レベルに照らし合わせると、 繁殖能力の低下が生じる可能性がある線量率となる。しかし、これまでに 2011 年以降の森 林性齧歯類における被ばく状況については情報が少ない。そこで、2012 年〜2014 年の繁殖 期に福島県内で捕獲したアカネズミ(*Apodemus speciosus*)を対象に被ばく量(内部被ば く量と外部被ばく量の合計)の推定を実施した。外部被ばく量は捕獲地点における空間線 量率から推定した。また、内部被ばく量は EGS5 によるシミュレーションで推定した。こ れらの合計値を個体の被ばく量とし、ICRP の誘導考慮参考レベルとの照合を実施し、繁殖 への影響について検討した。

EGS5を使用したアカネズミの被ばく量推定について

福島第一原発事故による周辺生物への影響に関する研究会

大沼 学 国立研究開発法人国立環境研究所 生物・生態系環境研究センター

事故直後の30日間における齧歯類の被ばく量の推定値 (飯館村の土壌サンプルから推定 Garnier-Laplace J, et. al. (2011))

ICRPの誘導考慮参考レベル

各線量率で生じる可能性がある放射線影響(ネズミ科)

>1000 mGy/day:造血系障害による死亡(成獣:6-10 Gy LD_{50/30}胚:1Gy LD₅₀) 100~1000 mGy/day:種々の原因による寿命短縮

10~100 mGy/day: 晩発障害の増加。寿命短縮の可能性。 繁殖能力の低下

<u>1.0~10 mGy/day:雌雄の生殖能力低下による繁殖能力低下の可能性</u>

0.1~1.0 mGy/day:非常に低い確率で影響が発生する

0.01~0.1 mGy/day: 観察される影響無し

<0.01 mGy/day: 自然放射線レベル

International Commission of Radiological Protection and Environmental Protection. The Concept and Use of Reference Animals and Plants; Annals of ICRP; Publication 108;

アカネズミの被ばく量推定 供試個体数:2012年~2015年に捕獲 合計73個体(オス:46個体、メス:27個体)

空間線量率(µSv/hr)の変化(地表面)

アカネズミ(成獣)の放射線被ばく線量

体内放射線蓄積量から、被ばく線量を求める

アカネズミの体系を円柱と仮定して計測する。

オス(30g以上の個体、歯の摩耗度4*以上)は直径20mm、長さ122mmの円柱 メス(23g以上の個体、歯の摩耗度4以上)は直径17mm、長さ104mmの円柱

(*疋田·村上(1980))

放射線感受性の高い組織

「演題名」被災アカネズミにおける精巣の EPMA 分析

「講演者名」大平拓也¹, 伊藤 洵¹, 藤嶋 洋平², 山城秀昭¹, 中田章史³, 鈴木正敏⁴,

有吉健太郎⁵, 葛西宏介², 篠田 壽⁶, 三浦富智², 福本 学⁷ ¹ 新潟大学農学部,² 弘前大学保健学研究科,³ 北海道薬科大学薬学部,⁴ 東北大学加齢医学 研究所,⁵ 弘前大学被ばく医療総合研究所,⁶ 東北大学歯学研究科、⁷東京医科大学医学部 「講演者所属」新潟大学農学部農業生産科学科動物生産学コース

「要旨(本文)」

福島第一原子力発電所の事故により放出された放射性物質は、周辺地域の環境中に生息する野 生動物に何らかの影響を及ぼす可能性は高い。特に、精巣は放射線感受性が高く、また、次世 代影響に直接的に関与することから、生殖機能への放射性物質の影響を明らかにすることは、 生態系に対する影響評価の指標となる。本研究では、被災アカネズミにおける精巣切片の組織 形態学的解析と電子線マイクロアナライザ(EPMA 1720HT, Shimazu)による微少領域における元 素の定性分析および Cs のマッピング解析することを目的とした。[実験 1] 野生アカネズミは、 旧警戒区域内外の高線量地区 A (空間線量 26.9 μ Gy/h: 2012/11/06)、中線量地区 I-1 (空間線) 量 16.4Gy/h: 2013/04/19)にて捕獲した。対照地区は、青森県弘前市 (0.06 μ Gy/h:2012/05/29) とした。[実験 2] 同様に、2016 年 4 月 12-14 日にかけて高線量地区 0 (空間線量 12.3 µ Gy/h)、 中線量地区 I-2 (空間線量 5.3 µ Gy/h)にて捕獲した。対照地区は、新潟県新潟市 (2016/04/18) とした。摘出した精巣は、ブアン液で固定、パラフィン包埋し、切片を作製した後に HE 染色を 施して、精巣組織および精細胞の分化の状況を観察した。さらに、精巣切片は、電子線を照射 して微小部の分析が可能な EPMA を用いて走査型電子顕微鏡観察、定性分析および Cs の分布を 測定した。HE 染色組織切片においては、精原細胞・精母細胞および精子が正常に分化・退行し ていることが観察された。EPMA にて定性分析の結果、精巣切片には、S.Nの元素が多く検出さ れた。Cs のマッピング解析を行った結果、いずれの精巣においても検出されなかった。以上、 福島第一原発事故後1年8ヶ月、2年1ヶ月および5年1ヶ月に捕獲した被災アカネズミの精巣 の精子形成・退行には異常は認められず、かつ、精巣切片における Cs の分布は明らかにされる 濃度ではなかった。

被災アカネズミにおける精巣のEPMA分析

大平 拓也¹, 伊藤 洵¹, 藤嶋 洋平², , 山城 秀昭¹,中田 章史³, 鈴木 正敏⁴, 有吉 健太郎⁵, 葛西 宏介², 篠田 壽⁶, 三浦 富智², 福本 学⁷

¹新潟大学農学部,²弘前大学保健学研究科,³北海道薬科大学薬学部, ⁴東北大学加齢医学研究所,⁵弘前大学被ばく医療総合研究所, ⁶東北大学歯学研究科、⁷東京医科大学医学部

背景

福島におけるヒメネズミの放射性物質影響の報告

平成24年度野生動植物への放射線 影響に関する意見交換会(環境省)

http://www.env.go.jp/jishin/monitorin g/results_wl_d130314.pdf

Kubota et al., J Environ Radioact 2015; 142:124–31.

福島のヒメネズミにおいて、二動原体染色体異常が認められたが、 十分な解析量ではないため現時点で明確なことは言えないと報告された。

背景

福島におけるアカネズミの放射性物質影響の報告

(Bq/kg wet weight)		2013	2014					
	¹⁵⁴ Cs	¹³⁷ Cs	n	134Cs	¹⁹⁷ Cs	n		
Site 1 (Fukushima)	2,326 (1,771-4,137)	4,331 (3,335-7,806)	12	4,770 (1,140-12,907)	12,312 (2,874-40,131)	10		
Site 2 (Fukushima)	1,380 (882-1,766)	2,815 (1,632-3,761)	4	2,359 (954-8,480)	6,426 (2,456-21,738)	8		
Site 3 (Aomori)	0 (0-11)	4 (0-21)	10	0 (0-0)	5 (3-8)	5		
Site 4 (Toyama)	0(0-0)	0 (0-3)	10	0 (0-0)	0(0-6)	8		

Table 3. The radioactivity concentrations of ¹³⁴Cs and ¹³⁷Cs in mice (*Apodemus speciosus*). Male adult mice in the breeding season (April and July-September) were used for the measurements. Values are presented as median (minimum-maximum). Values under the detection limits were treated as 0 Bq/kg.

(µSv/h)	2013	2014		
Site 1 (Fukushima)	13.9 ± 4.2	12.7 ± 1.6		
Site 2 (Fukushima)	4.9 ± 0.4	4.1 ± 0.6		
Site 3 (Aomori)		tere Second contraction of the second		
Site 4 (Toyama)	<0.10 (natural background level)			

122 mGy/Year

Okano et al., Scientific Reports, 6:23601, 2016

青森と福島のアカネズミの精巣の形態および精子の異常率は、 差が認められなかった。

生殖器官および生殖細胞に対する放射性物質の影響

福島第一原発事故により放出した 放射性物質が、周辺地域に生息 する野生ネズミに及ぼす影響は、 複数の研究機関、放医研や 国環研で現在調査中であり、 未だ明確な結論は出されていない。

被災アカネズミにおける精巣切片の組織形態学的解析と 電子線マイクロアナライザ(EPMA)による、微少領域における 元素の定性分析およびCsのマッピング解析を目的とした。

材料

個体情報

高線量地区	中線量地区								
コントロール									
Seq	捕獲日	解剖日	場所	体重	全長		Not the	. 🛞	all I
150	2012/5/29	2012/5/29	坂元	36.96				1. 40	FR
2721	2015/11/20	2015/11/20	舺	34.15	207				
2811	2016/4/18	2016/4/18	舺	42.75	223				All A
解析区				·					1200
Seq	捕獲日	解剖日	場所	体重	全長	線量		1 Alexandre	2014/06/00
215	2012/11/6	2012/11/6	赤宇木	23.53	189	26.9 µ Gy/h		7 -	100
260	2013/4/19	2013/4/19	赤宇木	32.42	195	15.2μGy/h			
572	2016/4/12	2016/4/12	小丸	36.21	202	12.3 µ Gy/h			
575	2016/4/13	2016/4/13	小丸	29.17	204	12.3 µ Gy/h	5		Contraction of the local division of the loc
590	2016/4/14	2016/4/14	小丸	10.81	145	12.3 µ Gy/h	NY III	11	CERTO I
594	2016/4/15	2016/4/15	小丸	28.08	215	12.3 µ Gy/h	V.		
595	2016/4/16	2016/4/16	小丸	44.45	248	12.3 µ Gy/h	UN UN	VERSITÀ DEGLI STUR	DI DELL'AQUELA
257	2013/4/19	2013/4/19	井出	30.2	295	16.4µGy/h	00	物語があ	R AND COLOR AND ADDRESS ADDRES
596	2016/4/14	2016/4/14	井出	50.09	245	5.3 µ Gy/h		すべてに	Sarah Marine
597	2016/4/14	2016/4/14	井出	43.52	223	5.3 μ Gy/h			S O II

摘出した精巣は、ブアン液で固定、パラフィン包埋し、3μmの切片を作製した後に、 H-E染色を施して精巣組織及び精細胞の分化の状況を観察した。

さらに、精巣切片はカーボンコーティングを施し、EPMAを用いて解析を行った。

分析条件		
加速電圧	:	15 [kV]
ビーム電流	:	100.0 [nA]
ビームサイズ	:	Min
計測モード	:	ステージスキャン
分析領域	:	260 × 195 [μm]
画像サイズ	:	868×649 [pixel]
測定ピッチ	:	0.3 [<i>µ</i> m]
積分時間	:	30.00 [ms/point]

EPMAの原理

Electron Probe Microanalysis: 電子線マイクロアナライザ

絞った電子線を試料に照射し、発生した 特性x線を捉えることにより微小部領域に ついて様々な情報を得ることができる。

主な仕様						
分析元素範囲	₅B~ ₉₂ U					
X線分光器数	WDX2~5チャンネル 及びEDXから選択					
X線取り出し角度	52.5°					
ローランド円半径	4インチ					
電子光学系						
電子源	Wフィラメント/CeB ₆ カソード					
二次電子像分解能	5nm					
加速電圧	0~30kV(0.5kVステップ)					
試料電流	10 ⁻¹² A∼10 ⁻⁵ A					
倍 率	× 50~ × 60,000					

Shimazdu EPMA-1720

事故後5年1ヶ月における野生アカネズミの個体情報											
							~		,		. C .
高線量地区	中線量地区						1		1		20km
)		
コントロール							<u>سر ۱</u>	\sim	2		
Seq	攡日	解剖日	場所	体重	全長]	とうし	'	V	11 1 2	1
2811	2016/4/18	2016/4/18	觛	42.75	223		L Y	_	\wedge	1-1 、 1-2 []de]	310 1
2721	2015/11/20	2015/11/20	胛	34.15	207		~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 L		ł
	1						4		لم ا	• • •	-
解析区							100	~~) 19rul 🦯	\sim
Seq	攡	解剖日	場所	体重	全長	線量					
572	2016/4/12	2016/4/12	小丸	36.21	202	12.3 µ Gy/h					
575	2016/4/12	2016/4/12	小丸	29.17	204	12.3 <i>µ</i> Gy/h		\sim		FNPP	
590	2016/4/13	2016/4/13	小丸	10.81	145	12.3 µ Gy/h	1	4	~~	\sim	
594	2016/4/14	2016/4/14	小丸	28.08	215	12.3 µ Gy/h	1			{	2
595	2016/4/14	2016/4/14	小丸	44.45	248	12.3 µ Gy/h)		\backslash	入	(
596	2016/4/14	2016/4/14	井出	50.09	245	5.3 <i>µ</i> Gy/h	$l \Gamma$	L.	\mathbf{i}		57
597	2016/4/14	2016/4/14	井出	43.52	223	5.3 µ Gy/h	SC -	~	7		
									- 73		

まとめ

・被災アカネズミ精巣のHE染色像においては、精原細胞、精母細胞および 精子が正常に分化・退行していることが観察された。

・EPMAにて定性分析の結果、精巣切片にはS、Nの元素が多く検出された。

・EPMAにてマッピング解析を行った結果、いずれの精巣においても Csは検出されなかった。

福島第一原発事故後1年8ヶ月、2年1ヶ月、及び5年1ヶ月に 捕獲した被災アカネズミの精子形成・退行に異常は認められず、 精巣切片におけるCsの分布は、明らかにされる濃度ではなかった。

森林における小型哺乳類(ノネズミ類および食虫類)の放射性セシウム

山田文雄¹, 島田卓哉², 中下留美子¹, 亘 悠哉¹, 堀野眞一¹

1森林総合研究所鳥獣生態研究室

2森林総合研究所東北支所

森林生態系における放射性物質の動態や野生動物への影響把握のために継続的モニ タリング調査を 2011 年秋から毎年実施している.小型哺乳類の捕獲や放射性セシウム の濃度分析を行い、とくにアカネズミを対象とした経年変化ついて検討している。その ほか、小型哺乳類における放射性セシウムの体組織を用いた濃度測定についての精度の 検証、小型線量計による外部被曝線量の検討、安定同位体比分析による食性の影響検討、 種の違いによる影響について検討している。

調査地は1)原子力発電所から 27kmの福島県川内村の国有林(中線量地、川内調査 地とよぶ。空間線量率は平均 3.6 µ Sv/hr、2011 年 10 月下旬測定)と、2)70kmの茨城 県北茨城市の国有林(低線量地、小川調査地とよぶ。空間線量 0.2 µ Sv/hr、12 月上旬測 定)、および3)29kmの福島県飯舘村の国有林(高線量地、飯舘調査地とよぶ。空間 線量 4.5 µ Sv/hr、2014 年 9 月下旬測定)の3カ所である。これらの調査地で、2015 年 については、9-11 月にシャーマントラップ約80-120 個を3-4 晩設置して捕獲を行った。 餌として燕麦を使用した。捕獲個体は炭酸ガスで殺処分後に、体重など外部計測を行い 齢段階に分けた。捕獲個体は毛皮、内臓および骨格筋(骨格を含む)に分け、放射線量 測定までは冷凍保管した。

高線量地(飯館),中線量地(川内)および低線量地(小川)ともに,増加傾向を示している.とくに,高線量地(飯館)と低線量地(小川)で顕著.リターは2014年から減少傾向で,土壌(0-5cm層)はほぼ一定を示している.

母親とその胎児の母子間の体内濃度の関係について,2011-2014に捕獲したネズミ類の母親と胎児個体(n=10)を対象に,母子間の胎盤を通じた放射性セシウムの移行を検討した結果,相関が認められた.

その他に,餌との関係などを検討しているので紹介したい.

森林における小型哺乳類 (ノネズミ類および食虫類)の放射性セシウム

山田文雄¹, 島田卓哉², 中下留美子¹, 亘 悠哉¹, 堀野眞一¹ (森林総合研究所野生動物研究領域 ¹鳥獣生態研究室, ²東北支所)

京都大学原子炉実験所専門研究会「福島第一原発事故による周辺生物への影響に関する研究会」 日時 2016年8月3-4日 場所 京都大学原子炉実験所 590-0494 大阪府泉南郡熊取町

まとめと今後

体内濃度の経年変化

経年変化に差がないが、やや増加 生息環境ではリターで減少、土壌で変化はない.

餌との関係

汚染度の高いものを食べると濃度高まり、汚染度低いものを食べると濃度低まると予想.

小型哺乳類

ノネズミ類では、ヤチネズミの濃度が高い、アカネズミとヒメネズミは同程度、 食虫類では、ヒミズがアカネズミと同程度、アズマモグラは低い、

今後のデータ整理を行い公表に努める.

福島県内野生ニホンザルへの被ばく影響評価

漆原 佑介¹、鈴木 敏彦²、清水 良央²、桑原 義和³、鈴木 正敏⁴、林 剛平⁴、斉藤 彰⁵藤田 志 織²、山城 秀昭⁶、木野 康志⁷、関根 勉⁸、篠田 壽²、青野 辰雄¹、福本 学⁹

¹量研機構放医研 福島再生支援本部 環境動態研究チーム、²東北大院 歯学研究科、³東北医 科薬科大 医学部、⁴東北大 加齢研、⁵日本電気株式会社、⁶新潟大 農学部、⁷東北大院 理学 研究科、⁸東北大 高度教養教育・学生支援機構、⁹東京医科大 分子病理学

被災動物の包括的線量評価事業では、2013年度より福島県内野生ニホンザルへの東京電力福島第一原子力発電所(福島原発)事故による放射線影響調査を開始し、2016年7月10 日現在で宮城県、新潟県で捕獲された個体を含めて349頭からのサンプリングを行っている。

本研究では、これまでに採取した各臓器・筋肉・血液中の放射性セシウム濃度測定結果から放 射性セシウムの体内分布を調べるとともに、造血機能への影響を調査するために末梢血及び大腿 骨中骨髄細胞の解析を行った。放射性セシウム濃度測定結果では、骨格筋の放射性セシウム濃 度が他の組織に比べて高く、筋肉以外では顎下腺、精巣、腎臓の濃度が高かった。一方、 甲状腺や脳の放射性セシウム濃度は低く、骨格筋濃度の 1/5 程度であった。サンプリングし たニホンザルのうち鮮血を採取できた個体について末梢血中白血球数、赤血球数、血小板 数、ヘモグロビン濃度、ヘマトクリット値の測定を行った。各々の血液性状について骨格 筋中放射性セシウム濃度との相関解析を行った結果、2013 年度、2014 年度捕獲個体では成 獣(5 歳以上)、幼獣(4 歳以下)ともに全ての測定項目について顕著な相関はみられてい ない。2013 年度に捕獲された幼獣及び成獣 9 頭ずつ計 18 頭について大腿骨骨髄中の顆粒 球系細胞数、赤芽球系細胞数、巨核球、脂肪割合の解析を行った結果、成獣において顆粒 球系細胞数が骨格筋中放射性セシウム濃度と負の相関を、脂肪割合が正の相関を示した。 これらの結果が放射線影響であるかを結論付けるために、継続的なサンプリングと解析、 さらに内部、外部被ばく線量評価を行う必要がある。

福島県内野生ニホンザルへの被ばく影響評価 漆原佑介^{1,2}、鈴木敏彦²、清水良央²、桑原義和³、鈴木正敏²、林剛平²、斉藤彰⁴、 藤田志織²、山城秀昭⁵、木野康志²、関根勉²、篠田壽²、青野辰雄¹、福本学^{6,2}

¹量研機構放医研、²東北大、³東北医科薬科大、⁴日本電気株式会社、 ⁵新潟大、⁶東京医科大

発表内容

放射性セシウムの体内分布

・臓器、筋肉、抹消血中Cs-137の相対濃度

・授乳中母サルと仔ザルのCs-137濃度比較

造血機能への影響評価

・末梢血中血球数の解析

・骨髄中細胞数の解析

まとめー1

放射性セシウムの体内分布

・臓器、筋肉、抹消血中Cs-137の相対濃度

ニホンザルにおいて骨格筋中Cs-137濃度が最も高く、筋肉以外でCs-137濃度の高い組織が存在する

生物種ごとのCs-137相対濃度の比較では、同等の相対濃度を示す組織も存在するが、 生物種によって相対濃度の異なる組織も存在する

 カリウム濃度測定 胃腸内容物、尿の測定からセシウム取り込み、排出量を算出
 ・授乳中母サルと仔ザルのCs-137濃度比較

 大腿筋以外の組織について比較 胎仔と母ザルのCs-137比について解析

まとめ-2

造血機能への影響評価

末梢血中血球数の解析

2013-2014年に捕獲されたニホンザルでは成獣、幼獣ともに末梢血液成分は筋肉中放射性セシウム濃度との顕著な相関がみられない

骨髄中細胞数の解析

2013年度の冬季に捕獲された成獣9頭の解析において、筋肉中放射性セシウム濃度と相関を示す項目があった

継続調査

他の解析方法による検証(染色体解析、CFUアッセイ、放射線感受性試験) 内部、外部線量評価

本研究にご協力いただいた以下の方々に御礼申し上げます。

サル検体提供

南相馬市議会議員 南相馬市 経済部 農政課 南相馬市 鹿島区 産業建設課 JA新ふくしま農業協同組合 危機管理センター 浪江町 産業・賠償対策課 飯舘村 前田行政区 新潟県 新発田市 環境衛生課 大山 弘一 桃井 保典、佐藤 和身 渡部 利幸 今野 文治 志賀 隆寿、志賀 貴光 長谷川 健一

(敬称略)

放射能汚染地域に生息するコイの健康調査 2013-2015

鈴木 譲 元東京大学水産実験所

ため池に棲むコイの免疫系を調べることで放射線の健康影響を適切に評価しようと いうのが本調査の目的である.2013,2014年の各8~9月に福島県内,および比較対 照として栃木県芳賀町で採集したコイの白血球数の算定と免疫関連の組織標本の観察 を行ない,筋肉中放射性セシウム137量との関係を探った結果を昨年までに報告して きた.2013年には福島のコイで白血球数の減少,マクロファージの集塊であるメラノ マクロファージセンター (MMC)の脾臓や肝臓での異常増殖などが見られ,放射線の 影響が疑われたが,2014年ではそうした差が認められなくなった.

2015年には調査範囲を 10 地点に広げたが,採集できたのは飯舘村前田,川内村, 芳賀町,名古屋市,大牟田市の 5 か所であった.これらのコイの組織学的観察結果, および福島大学から提供された大熊町のコイの検討結果を報告する.

<結果>

2014年の結果を 2013年と比較すると、福島のコイが正常になったのではなく対照 の芳賀町のコイにも異常が見られるようになっている.さらに 2015年には名古屋や大 牟田など放射能汚染のない地域のコイでも MMC の発達などが観察された.これらは 観察された異常が病気など他の要因でも起こる得ることを示す結果であり、放射線の 影響を評価するにはさらに多くの検体で比較する必要があることを示している.

一方,大熊町のコイでは事故後に産まれた若齢魚においても高濃度のセシウム蓄積 が見られ,肝細胞の委縮,膨潤,空胞化など,他の調査地点では見られない様々な異 常が認められた.大型魚においてはさらに顕著で,ほとんどの肝細胞が形を失ってい る個体すら認められた.今後,肝臓の変異に注目してさらに検討する必要がある.

<総括>

過去3年間の調査により,福島事故後の放射能汚染によりコイが健康を害している 可能性は示されたものの,異常と判定した症状が放射線以外の様々な要因でも起こり 得ることから結論は明確でなくなってきた.そうした中で放射線の影響を評価するの は容易ではない.その一方,大熊町の高濃度汚染地帯では他では一切見られない肝臓 の異変が認められ,今後さらに検討を加えて行きたい.

これまでの調査でコイを獲りつくしてしまったのか、十分な材料の捕獲が難しい場 合が多く、調査の継続が困難になってしまった.また均一条件で育ったコイを用いて 比較するという目的もあって、同じ養殖場で育ったコイを各地の池に放流して1年後 に再捕獲することでより厳密な比較をする計画である.現在コイを同一水槽にて飼育 中であり、今秋には各地の池に放流する予定である.

77

放射能汚染地域に生息するコイの健康調査2013-2015

鈴木 譲

東京大学名誉教授 (元農学生命科学研究科附属水産実験所)

私の調査. 福島事故後, ため池に閉じ込められたままのコイなら, 生育条件も均質であり, 放射線の影響を適切に評価できるはず. 殺して切り刻んでも誰も文句をいわない.

予備知識もないままに、免疫系への影響を調べることにした.

1. コイを4~5尾釣り上げる.

- 2. 血液性状検査: 魚を麻酔してヘパリン処理注射器で採血
- ・血液を希釈し、血球計算盤上で顕微鏡観察し、赤血球数を算定する.
- . スライドグラスに血液を薄く塗布した塗抹標本を作製する.
- 3. 組織学的検査: 魚を解剖して各組織を切り出し、ホルマリンで固定する.
- 4. 放射線量測定: 筋肉を切り出し,細かく切り刻む.

調査方法ーラボでの作業

組織薄切用ミクロトーム(東大水実)

ゲルマニウム半導体測定器(ちくりん舎)

- 2. 血液性状検査: 塗抹標本にMay-Grunwald Giemsa染色を施して顕微鏡で 観察し,各白血球数を算出する.
- 3. ホルマリン固定した組織をパラフィンに包埋した後、ミクロトームで厚さ5µmの切片を作製し、H.E染色を施して顕微鏡で観察する.
- 4. 放射線量測定: 筋肉サンプル中のセシウム量を測定する (NPO法人市民 放射能監視センターちくりん舎に依頼).

セシウム濃度測定結果のまとめ

調査地点	空間線量	筋肉中セシウム量			(Bq/kg)	底泥中 ¹³⁷ Cs
	(uSv)	個体数	¹³⁴ Cs	¹³⁷ Cs	Cs total	B q/kg乾重)
2013年						
MD13	2.5	5	402	921	1323 ± 731	8200
KM13	2.5	4	1540	3493	5033 ± 1157	53000
WD13	3.6	5	1818	4168	5986 ± 2619	21000
TG13	0.04	4	3	10	13 ± 5.5	55
2014年						
MD14	1.5	5	100	328	$438\pm~214$	12000
NG14	3.3	5	306	1004	1310 ± 532	57000/66000
MS14	0.9	4	243	815	1058 ± 294	38000
KW14	0.2	5	21	69	90 ± 42	4100
TG14	0.03	5	-	6	6 ± 1	11
1014 0.03 3 - 0 0 1 1 1 1 1 1 1 1						

免疫関連諸臓器に見られる組織学的変化は 放射線の影響なのだろうか?

脾臓: 魚にはリンパ節がなく,脾臓が免疫応答の場となり,抗原情報に基づき抗体が産生される.血液中の異物も脾臓でトラップされて処理される.器官内に膵臓組織を併せ持つ.

頭腎: 腎臓の前方部分で,哺乳類の骨髄と同様,胸腺で作られるT細胞以 外の血球産生が行われる.副腎組織も併せ持つ.

腎臓: 尿をつくる器官だが,頭腎同様に血球産生が行われる.

肝臓: さまざまな免疫関連分子を産生する.哺乳類と異なり、クッパ─細
胞は見当たらない.器官内に膵臓組織を併せ持つ.

免疫応答の場である脾臓や造血器官の頭腎では,病原生物や不要な細胞を処理するマクロファージが集塊状のメラノマクロファージセンター(MMC:矢頭)を形成しているが,福島のコイでは異常に発達していた.MMCの異常な発達はヤマメでも観察されており(東北大・中嶋正道准教授),放射線の影響が強く疑われる.

MMCの異常な発達は脾臓や頭 腎の他,通常は存在しない肝 臓,膵臓でも認められた. 放射線でダメージを受けた大量 の細胞がマクロファージに取り 込まれ,仮置き場のように保管 されている像と推察される.

福島のコイに見られたその他の異常

2013年,福島の一部の個体では脾臓に細胞外に微細な黒色顆粒が認められた.崩壊した細胞に由来するものと推察される. また,一部の個体では肝細胞が円形に委縮し,配列も乱れていた.

しかし、こうした変化はすべての個体に見られたわけではない.

栃木県と飯舘村のコイに おける各白血球数の比較 (2013)

好中球**(Neutrophil)** バクテリアを食べて 殺す

好塩基球(Basophil) 機能不明.寄生虫防 御?

単球**(Monocyte)** バクテリアを食べて その抗原情報をリン パ球に提示

リンパ球**(Lymphocyte)** 抗原情報に基づき抗 体を作る

2013年にはコイの白血球数に汚染地域と非汚染地域とで明瞭 な差が見られた.しかし,2014年には差が見られなくなってしまった.

これまでの調査の弱点は福島と比較すべき対照を栃木1か所 しか設定できなかったことであり、これでは確実な結論を出すこ とができない. 今後、非汚染地域での調査を充実させることが なにより重要である. 調査のまとめ

福島のため池には大量のセシウムを含む底泥が堆積しており、コ イ筋肉にも最大という高濃度のセシウムが蓄積されていた.

福島のコイは放射性セシウムの大量蓄積により何らかの形で不 健康状態におちいっている可能性が高いが,断定することはでき なかった.

2015年の調査

低濃度から高濃度まで幅広い放射能汚染段階で調べることが重要.その中でも特に関東,東北以外の非汚染地域の対照を複数 設定することが必須である.

低濃度汚染地域として仙台,郡山を,非汚染地域として柏崎・刈 羽,磐田,名古屋,大牟田を加えて調査を行なった.

コイ若齢個体の充実した肝臓と膵臓(郡山)

大熊町では肝細胞の空胞化が目立つ

大熊町の1個体では肝細胞が崩壊(寄生虫影響も否定できない)

これまでの調査のまとめ

福島のコイは放射性セシウムの大量蓄積により何らかの形で不 健康状態におちいっている可能性が高いが,断定することはでき なかった.

放射線の影響は同一の環境で生育していた個体であっても様々 な形で現れ、しかもそれぞれの変異は加齢や病気など他の要因 でも起こり得るもので、因果関係の特定は困難である.ただ大熊 町のコイに見られた肝臓障害は他では認められず、今後追求す べき課題と言えるだろう.

実験室内での研究手法を野外に適用しても個体差が大きく結論 を出すのが困難であることを率直に反省する.

今年から新規の実験的研究を実施

条件をできるだけ均等にするため、養殖されたコイ若齢魚を各地の池に放流し、1年後に再捕獲して分析する実験をスタート.

現在東大水産実験所にて飼育中.秋ごろ放流で、結果がでるのは来年以降になる.2016年9月2日までにすべての放流完了.

調査にご協力いただいた多くの皆様に感謝の意を表します

- ・飯舘村放射能エコロジー研究会(IISORA) 小澤祥司氏ら、多くのIISORAメンバー
- ・飯舘村 伊藤延由氏,長谷川健一氏,庄司正彦氏ら,多くの皆様
- ・南相馬市 小澤洋一氏,末永伊津夫氏,志賀利通氏,および「ふくいち周辺環境放射線 モニタリングプロジェクト」の皆様
- ·川内村 山下和正氏
- ・郡山市 渡辺正氏
- ·栃木県芳賀町 高橋伸拓氏
- .群馬県沼田市 小渕均氏
- ·神奈川県小田原市 諏訪間順氏
- ·新潟県刈羽村 近藤容人氏
- ·磐田市 細田昭博氏, 浜松市 片桐和雄氏
- ・名古屋市 飯尾俊介氏
- ・大牟田市 田中隆基氏,新宿区 渡辺好庸氏

・ちくりん舎 (NPO法人市民放射能監視センター) 浜田和則氏,青木一政氏, 辻よし子氏 ·NPO法人 いわき放射能市民測定室 たらちね 織田良孝氏,鈴木薫氏,天野光氏 ·九州大学農学研究院 教授 中尾実樹氏

- .東京大学農学生命科学研究科 教授 金子豊二氏
- 同 附属水産実験所 准教授 菊池潔氏ほか多くの皆様
- ·福島大学環境放射能研究所 教授 難波謙二氏 准教授 和田敏裕氏
- .その他,お手伝いあるいは応援して下さる大勢の皆様
- ・年金生活にも関わらず調査への出費を容認してくれる妻

Transcriptomic, proteomic and metabolomic profiling of low-level gamma irradiated rice at litate village, Fukushima

Randeep Rakwal

Faculty of Health and Sport Sciences, and Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba

E-mail: plantproteomics@gmail.com

We have been investigating the effects of low dose of gamma radiation in rice, following the 2011-3.11 Great Tohoku Earthquake and the subsequent nuclear accident at Fukushima Daiichi Nuclear Power Plant. To do so, the contaminated litate Farm field (hereafter ITF) located in Iitate village, 31 km from the damaged nuclear power plant having an ambient radiation level of $\sim 5 \,\mu$ Sv/h, around 100 times higher than natural background radiation for Japan (~ 0.05 μ Sv/h), was used for investigating low-level gamma radiation experiments using Japonica-type rice (Oryza sativa L.) as a model system. Two experimental designs were used, first, a two-week-old seedling model for leaf, and second, growing rice in the contaminated soil till harvest for seeds. In experiment 1, the leaves were sampled at 0, 6, 12, 24, 48 and 72 h post-gamma irradiation at ITF, and rice whole genome 4x44K DNA microarray chip revealed differentially regulated 4481 (induced) and 3740 (suppressed) and 2291 (induced) and 1474 (suppressed) genes at 6 and 72 h, respectively. Gene expression profiles in DNA replication/repair, oxidative stress, photosynthesis, and defense/stress functions were validated by RT-PCR. Simultaneously, 2D-DIGE-based analysis at 72 h revealed 91 differentially expressed spots, whose MALDI-TOF and TOF/TOF mass spectrometry analyses identified 59 different (50 up-accumulated, 9 down-accumulated) proteins. These results unraveled the molecular responses at the level of the genome and proteome in vegetative leaf tissues. In experiment 2, we grew rice in the contaminated site (rice field) in ITF, till maturity and harvested the seeds. These seeds were compared with the seeds harvested from the rice grown in the clean soil in Minamisoma (Fukushima) at the level of the genome and metabolome under continuous gamma radiation exposure outside and inside the rice plant. An Agilent-based multi-omics workflow and analyses was used for the seed study to reveal the modulation of several metabolic and defense pathways related to the stress response of plants. It can be said that the rice plants grown in radionuclidecontaminated soil form seeds with an elevated defense capability against stress. Currently, we are investigating the rice seed proteome-wide changes using 1-DE shotgun approach in combination with mass spectrometry.

litate-mura Society for Radioecology (IISORA)

Transcriptomic, Proteomic and Metabolomic Profiling of Low-Level Gamma Irradiated Rice at litate Village, Fukushima

Randeep RAKWAL

Professor, Faculty of Health and Sport Sciences, UT Tsukuba International Academy for Sport Studies (plantproteomics@gmail.com / 090-1853-7875)

KURI - AUGUST 3, 2016

CONTENTS

Brief Introduction Radiation

Radiation
 OMICS

- TRANSCRIPTOMICS
- > PROTEOMICS
- Genes to Metabolites

The Start@TSUKUBA

Ultra-low dose gamma radiation (high levels of cesium-137 (¹³⁷Cs) and strontium-90 (⁹⁰Sr)- both fission products from the reactor core) exposed rice seedling

The Start@TSUKUBA

1. DNA microarray analysis revealed 516 differentially expressed genes that were categorized into three main functions of information storage and processing, cellular processes and signaling, and metabolism, and changes in genes, proteins, and secondary metabolites

(Kimura et al., RGN, 24:52-54, 2008)

Continue@KURI

(Rakwal et al., Int. J. Mol. Sci. 10:1215-1225, 2009)

In the Laboratory - Not in the Field

Continue@IITATE - Fukushima

The events following the 2011, 3.11 nuclear accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) after the Great Tohoku Earthquake unexpectedly ...

Continue@IITATE / IITATE FARM - Fukushima

... provided an opportunity to initiate a new research project with fellow physicist's/radiation experts at the highly contaminated field (litate farm) in the litate village of Fukushima prefecture, Japan

IISORA – litate-mura Society for Radioecology

RICE - WHY?

Source: Adapted from - Mass Spectrometry Reviews, 2013, 32, 335–365; Agrawal GK et al. @2013 by Wiley Periodicals, Inc.

Rice is a research model / Rice is life

RICE – OMICS?

Source: Adapted from - Mass Spectrometry Reviews, 2013, 32, 335–365; Agrawal GK et al. ©2013 by Wiley Periodicals, Inc.

Omics to Systems Biology – Functional Genomics

CONTENTS

Brief Introduction

Radiation
 OMICS

> TRANSCRIPTOMICS

- PROTEOMICS
- Genes to Metabolites

Europh Ale

on this species from the reduction leaks... Click have far more information.

100

Exp 1: Rice seedling preparation for ITF

Germination and growth of rice plants to 12-days old stage with 3rd leaf, grown in the controlled greenhouse at the National Institute for Environmental Sciences (NIES), Tsukuba, Japan. 20 µSv was the total accumulated dose for the whole growth period.

Set up experimental field at ITF & transport of rice

Experimental design & strategy

Rice (Oryza sativa L. cv. Nipponbare) in Low-level Gamma Field

Journal of Heredity 2014:105(5):723-738 doi:10.1093/jhered/esu025 - © The American Genetic Association 2014

Result 1: Visual Observation

72 h (3 days) post-exposure (17-days-old)

30-days old seedling in Greenhouse (Treated, 3-day Gamma ray exposed at ITF)

30-days old seedling (Healthy, Greenhouse)

Gamma radiation affects the tips of rice seedling leaves. A) Leaf tips at 3-days post exposure to gamma radiation; 3rd leaves are marked by arrows. B) 3-day exposed seedlings showing the drying of the leaf (3rd) tips progression (marked by arrows) at 30 days post-germination, in the control greenhouse (NIES, Tsukuba). C) Healthy seedlings show no such damage to the 3rd leaf or any other leaf.

Back to laboratory & sample preparation

Pictorial representation of the rice leaf powder preparation protocol in liquid nitrogen using a pre-chilled (in liquid nitrogen) ceramic mortar and pestle.

Result 2: Gene expression changes via RT-PCR

Gene expression analysis of 22 selected genes. Beta-actin gene was used to check the quality of cDNA and as a positive control. Relative abundance of gene expression calculated from the bands on agarose gels were plotted against treatment (gamma radiation) time and dose.
Genomics – DNA microarray technology

DNA microarray chip/slide design and placement of control and treatment sample sets using the dye-swap approach. Two 4x44K chips were used in this study.

Result 3: Gene expression changes genome-wide

							25178451	0080_1_1		2517845	10080_1_2			
							Oh x 6h li	itate Farm		swap				
ProbeNam e	SystematicName	annotation	description	AK	-	Sequence	gProces sedSign	rProcess edSid	Fold	gProces sedSign	rProcess edSid	Fold	average	average Fold
P5 -02 05	0.00.0-02-05470	CCT motif family protein expressed	CCT domain containing n	AK120401		TTAGAAT	ar 79.4	200765	282 13	350176	2032	0.01	7.74	213 65
R5_07_28	LOC_0s02g03470	esterace precursor putative expressed	Similar to Esterase precu	AK071404		CGGGAT	30	6767	173.76	6594	2352	0.01	7 33	161.00
R5_c11_39	LOC_0e11e32650	chalcone synthase putative express	Similar to Chalcone synth	AK067810		GTGAGG	1063	307008	288.85	294275	3784	0.01	7.03	149.88
R5_c01_00	LOC Os01e06310	olycine-rich cell wall structural protein	Conserved hypothetical p	AK241045		CATGCA	42	11938	287.00	9596	130	0.01	7 18	145 31
R5 c01 01	LOC Os01a22910	oxidoreductase, 20G-Fe oxygenase	Conserved hypothetical p	AK241922		GTGTCC	53	7613	143.63	6456	46	0.01	7.15	142.46
R5 c02 09	LOC Os02a46970	4-coumarate-CoA ligase 2, putative,	Similar to 4-cournarateC	AK105636		TIGGGG	361	58045	160.66	69173	588	0.01	7.10	137.47
R5 c03 13	LOC Os03q47610	thiamine biosynthesis protein thiC, p	Similar to Thiamine biosy	AK120238		ATTGTTA	46	9939	217.64	10273	125	0.01	7.06	133.86
R5 c07 26	LOC Os07q08150	early light-induced protein, chloroplas	Similar to Low molecular	LOC Os07	q0815	TCACATA	392	66831	170.55	65527	674	0.01	7.01	128.81
R5 c01 05	LOC Os01q69840	expressed protein	Conserved hypothetical p	LOC Os01	- o6984	AAACCT	18	4507	245.36	4266	64	0.01	7.00	128.24
R5_c11_37	LOC_Os11g03240	transparent testa 12 protein, putative,	Multi antimicrobial extrusi	AK067875		TATGGG	409	49190	120.33	32853	242	0.01	7.00	127.89
R5_c01_04	LOC_Os01g59920	cysteine synthase, chloroplast precu	Similar to Cysteine synth	AK065664		TCTTCAA	63	5158	82.27	4824	26	0.01	6.95	123.56
R5_c02_09	LOC_Os02g46680	multidrug resistance protein 2, putativ	Similar to P-glycoprotein	AK106518		GGGGTT	17	2322	138.39	2017	20	0.01	6.90	119.04
R5_c12_40	LOC_Os12g03230	transparent testa 12 protein, putative,	Multi antimicrobial extrusi	LOC_Os12	g0323	TGTATAT	342	38670	113.14	42931	357	0.01	6.87	116.59
R5_c09_32	LOC_Os09g08280	expressed protein	Conserved hypothetical p	AK119936		GTCGTA	97	13402	137.72	10832	114	0.01	6.84	114.56
R5_c04_18	LOC_Os04g58840	aspartic proteinase nepenthesin-2 pre	Peptidase A1, pepsin fam	AK060191		TGTCCC	40	5609	139.57	4334	49	0.01	6.80	111.42
R5_c04_18	LOC_Os04g57880	dnaJ domain containing protein, expr	Similar to Chaperone prot	AK068186		GAGACO	162	22354	137.60	22791	255	0.01	6.79	110.97
R5_c11_39	LOC_Os11g32890	expressed protein	Conserved hypothetical p	AK063652		TTATGAA	16	1796	112.37	2187	21	0.01	6.76	108.66
R5_c05_21	LOC_Os05g43880	gibberellin 2-beta-dioxygenase, putat	20G-Fe(II) oxygenase d	AK107211		GTTGGG	51	3446	67.80	3488	20	0.01	6.75	107.96
R5_c04_16	LOC_Os04g27790	terpene synthase 8, putative, expres	Terpenoid cylases/protein	AK062280		GGAATC	16	1780	109.59	1697	17	0.01	6.72	105.71
R5_c12_40	LOC_Os12g02370	chalcone-flavonone isomerase, puta	Chalcone-flavanone isom	AK099443		AACCTC	234	23157	99.10	20775	185	0.01	6.72	105.53
R5_c04_17	LOC_Os04g43800	phenylalanine ammonia-lyase, putati	Similar to Phenylalanine a	AK067801		TAAAGG	1107	167537	151.29	161207	2332	0.01	6.68	102.27
R5_c06_23	LOC_Os06g10350	anthocyanin regulatory C1 protein, p	Similar to P-type R2R3 M	AK062487		GTCCGT	72	5347	74.64	4929	36	0.01	6.67	101.78
R5_c03_10	LOC_Os03g05700	expressed protein	Conserved hypothetical p	AK109181		GGCTTTC	24	5616	235.15	4963	116	0.02	6.65	100.23
R5_c05_22	LOC_Os05g49920	pentatricopeptide repeat protein PPR	Protein prenyltransferase	LOC_Os05	g4992	ACTGCT/	76	3590	47.40	3490	17	0.00	6.62	98.57
R5_c01_01	LOC_Os01g19770	stress-inducible membrane pore prote	Mitochondrial import inner	AK242170		TTATGTT	68	6099	89.07	6214	58	0.01	6.61	97.94
R5_c09_33	LOC_Os09g26260	ATP binding protein, putative, expres	Conserved hypothetical p	AK242363		GAAAAG	274	30876	112.74	37038	439	0.01	6.61	97.50
R5_c07_28	LOC_Os07g34570	thiazole biosynthetic enzyme 1-1, ch	Similar to Thiazole biosyn	AK064916		GATCCG	752	99498	132.37	89653	1284	0.01	6.59	96.14
R5_c10_35	LOC_Os10g17260	flavonoid 3-monooxygenase, putativ	Similar to Flavonoid 3'-mo	AK064736		GGCACT	657	73406	111.70	65158	827	0.01	6.55	93.82
R5_c07_26	LOC_Os07g08160	early light-induced protein, chloroplas	Similar to Low molecular	LOC_Os07	g0816	GCTTATA	2160	300510	139.09	259321	4159	0.02	6.54	93.12
R5_c01_04	LOC_Os01g62260	osmotin-like protein precursor, putativ	Thaumatin, pathogenesis-	AK060655		TCTAATG	286	36637	128.09	36143	537	0.01	6.54	92.85
R5_c06_23	LOC_Os06g21910	protein LE25, putative, expressed	Late embryogenesis abun	AK063726		TAATCAC	17	2620	158.22	2385	46	0.02	6.49	90.17
R5_c02_07	LOC_Os02g19640	IQ calmodulin-binding motif family pr	IQ calmodulin-binding reg	AK105486		TAACTTG	52	7297	139.74	7202	125	0.02	6.48	89.55
R5_c01_00	LOC_Os01g12440	ap2 domain protein, putative, expres	Similar to DNA binding pr	AK106517		ATGAGA	166	19946	119.88	24690	385	0.02	6.45	87.69
R5_c07_26	LOC_Os07g04330	expressed protein	Conserved hypothetical p	AK064609		TGTGTAA	18	1786	97.49	1215	18	0.01	6.35	81.64
R5_c01_02	LOC_Os01g42190	dnaJ-like protein, putative, expressed	Heat shock protein DnaJ,	AK065697		AATGATO	159	19893	125.15	20015	396	0.02	6.31	79.57

Result 4: Gene expression changes genome-wide

Journal of Heredity 2014:105(5):723-738 doi:10.1093/jhered/esu025 - C The American Genetic Association 2014

Result 5: Bioinformatics analysis

MapMan is a user-driven tool that displays large datasets (e.g. gene expression data from Arabidopsis Affymetrix arrays) onto diagrams of metabolic pathways or other processes.

MapMan

http://mapman.gabipd.org/web/guest/mapman

Dia	Functional Cotonomi	6 h UP		6 h_DOV	VN	72 h_U	P	72 h_DOWN	
Bin	Functional Category	Count +	% -	Count -	% -	Count -	% -	Count -	% -
1	PS	2	1.1	1	0.4	1	0.4	0	0.0
2	major CHO metabolism	0	0.0	3	1.3	3	1.3	0	0.0
3	minor CHO metabolism	1	0.5	5	2.2	1	0.4	1	0.5
4	glycolysis	1	0.5	0	0.0	1	0.4	0	0.0
5	fermentation	1	0.5	0	0.0	0	0.0	1	0.5
7	OPP	0	0.0	1	0.4	0	0.0	0	0.0
8	TCA / org. transformation	1	0.5	1	0.4	0	0.0	3	1.5
10	cell wall	1	0.5	5	2.2	6	2.6	1	0.5
11	lipid metabolism	2	1.1	5	2.2	6	2.6	1	0.5
12	N-metabolism	1	0.5	0	0.0	0	0.0	0	0.0
13	amino acid metabolism	1	0.5	2	0.9	4	1.7	0	0.0
15	metal handling	0	0.0	1	0.4	1	0.4	2	1.0
16	secondary metabolism	2	1.1	3	1.3	11	4.7	4	2.0
17	hormone metabolism	4	22	2	0.9	10	4.3	12	5.9
18	Co-factor and vitamine metabolism	0	0.0	1	0.4	1	0.4	1	0.5
19	tetrapyrrole synthesis	0	0.0	0	0.0	2	0.9	0	0.0
20	stress	7	3.8	11	4.9	5	21	16	7.9
21	redox regulation	2	1.1	0	0.0	3	1.3	1	0.5
22	polyamine metabolism	1	0.5	0	0.0	0	0.0	0	0.0
23	nucleotide metabolism	0	0.0	0	0.0	2	0.9	1	0.5
26	misc	11	6.0	14	6.2	23	98	22	10.8
27	RNA	17	9.2	16	7.1	15	6.4	20	9.9
28	DNA	3	1.6	2	0.9	2	0.9	0	0.0
29	protein	45	24.5	19	8.4	25	10.6	11	5.4
30	signalling	3	1.6	22	9.8	15	6.4	19	9.4
31	cell	1	0.5	6	2.7	5	21	2	1.0
33	development	3	1.6	2	0.9	1	0.4	4	2.0
34	transport	6	3.3	7	3.1	9	3.8	6	3.0
35	not assigned	69	37.5	101	44.9	89	37.9	79	38.9
	The number of non-redundant gene	184	100	225	100	235	100	203	100

Result 6: Overall picture emerges, genome-wide

Molecular events and potential components for cellular response against gamma radiation stress in rice leaves. Gene expression changes are depicted in MapMan format version 3.1.1, where A) 6 h post-treatment, and B) 72 h post-treatment indicate the early and late responsive gene expressions; each square presents a gene. Red and blue mean up- and down-regulation in gene expression, respectively.

Journal of Heredity 2014:105(5):723–738 doi:10.1093/jhered/esu025 - © The American Genetic Association 2014

Conclusions 1

- Present results provide an overview of the low-level gamma radiation-responsive rice transcriptome showing both specific and common (to other abiotic stress) modulation of gene expression in the rice plant.
- > Two important points can be highlighted from this study:
- i) the experimental design and strategy provides a new way to study the effects of gamma radiation in cereal model systems, though the effects of dose dependency remain to be clarified, and
- $\circ\,$ ii) the large inventory of differentially expressed genes provides a great resource for genes that might be uniquely modulated by ionizing radiation.
- Considering the large number of changed genes, it will be only possible to clarify the gamma ray response in whole by further experimentation and detailed bioinformatics analysis.
- Future studies will involve analyzing the leaf proteome to complement genomics data reported here, and to observe effects of gamma radiation in the whole plant to the level of the seed.

CONTENTS

Exp 2: Rice Seedling Leaf – Proteomics/2-D-DIGE

Copyright - Plant Signaling & Behavior 0:0, e1103406; October 1, 2015; © 2015 Taylor & Francis Group, LLC

Results 7 – 72 hours after gamma radiation

A RF1 RF3 RF1 RF3 RF1/RF3 B $\frac{150 \text{ kDa}}{50 \text{ kDa}}$ $\frac{100 \text{ kDa}}$

The 2D-DIGE fluorescent Jabeled proteins. A) Side by side comparison of gel images showing the differently-labeled proteins from the control sample (RF1) and the irradiated sample (RF3), as well as a composite image of two (RF1/RF3). B) The labeled composite RF1/RF3 2D gel. Differentially expressed spots (91 in total) that were selected for extraction and MS analysis are marked.

Copyright - Plant Signaling & Behavior 0:0, e1103406; October 1, 2015; © 2015 Taylor & Francis Group, LLC

Results 8 – Image analysis

Copyright - Plant Signaling & Behavior 0:0, e1103406; October 1, 2015; © 2015 Taylor & Francis Group, LLC

Results 9 – Functional categorization

Copyright - Plant Signaling & Behavior 0:0, e1103406; October 1, 2015; © 2015 Taylor & Francis Group, LLC

Results 10 – Identified proteins

Protein	Accession ¹	Calegory	RF3/RF1 (mean)*	Spoke (DF3/DF1) ⁴
Putative thiamin biosynthesis protein	g(13435255	1	8.51	21(13.48), 22(3.54)
DEAD-box ATP-dependent RNA helicase 3, chloroplastic	RH3_ORYSJ	IV	6.22	11
Chalcone synthase 1	CHS1_ORYSJ	VIX	4.92	41
Os02g0285800	91115445587	V	4.19	9
Putative protein ABIL2	ABL2_ORYSJ	VII	4.13	43
Chloroplast 29 kDa ribonucleoprotein	gl149392545	IV	3.44	58
Tubulin alpha-2 chain	TBA2_ORYSJ	VII	3.27	84(3.11), 85(3.13), 86(3.56)
RuBisCO large subunit-binding protein subunit beta, chloroplastic	gl(2506277	1	3.08	28
Phenylalanine ammonia-lyase	PAL1_ORYSJ	1	2.95	23
Proteasome subunt alpha type-1	PSA1_ORYSJ		2.94	52
Cystene processe 1	CTSPI_ORTSJ	IV	2.02	13
Ox06x0308000	g(51090752	NO IN	2.00	27
Lactoviolutathione lyase	LGUL ORYSJ	IX	2.52	88
Putative NAD-malate dehydrogenase	9842407501	1	2.49	47
RuBisCO large subunit-binding protein subunit alpha, chloroplastic	9134102	Ï	2.46	26
Endoribonuclease Dicer homolog 1	DCL1_ORYSJ	IV	2.36	8(2.21), 79(2.50)
S-adenosylmethionine synthase 2	METK2_ORYSJ	VIIVV	2.32	39
Phosphoglucomutase, cytoplasmic 2, putative, expressed	gi108710732	1	2.27	19
Chloroplast inner envelope protein, putative, expressed	gi(110289317	X	2.17	6
Protein STAR1	STAR1_ORYSJ	VI	2.16	1(1.78), 18(2.51), 25(2.18)
Abscisic stress ripening protein 2	01149391461	IX	2.14	78
Tubulin alpha-1 chain	TBA1_ORYSJ	VII	2.10	87
RecName: Full=Heat shock cognate 70 kDa protein	g(123650	IX	2.08	15
Ketol-acid reductoisomerase, chloroplastic	ILV5_ORYSJ	1	2.07	31(2.39), 32(1.75)
5-methytetrahydroptercytriglutamate-homocysteine methytransferase, putative, expressed	g(108862992	1	2.02	12
Os02p0519900	gi115446385	V	2.02	10
Cyanate hydratase	CYNS_ORYSJ	IX	1.99	75
Heat shock protein 70	gi(21664287	IX	1.98	14
Heat shock protein 81-1	HSP81_ORYSJ	IX	1.96	3
Nucleic acid-binding protein-like	9(42407940	X	1.94	49
ATP-dependent zinc metalloprotease FTSH 1, chloroplastic	FTSH1_ORYSJ	LX X	1.92	16
Enderhammen Somerase, cytosoic	TPIS_UKYSJ	VII	1.87	60
Enutrate 1 E bischoschalase chimolastic	E16P1 ORVSI	1	1.00	36
Translationally-controlled tumor protein homolog	TCTP ORYSJ	VIVX	1.78	70
Thioredoxin reductase NTRC	NTRC_ORYSJ	VII/X	1.77	33
OSJNBa0091D06.15	gK38567873	V	1.74	4
Os01g0372700	g(115436616		1.70	20
Cell division cycle protein 48, putative, expressed	9(110289141		1.64	5
Os04g0118400	gi115456914	V	1.63	13
Putative heat shock 70 KD protein, mtochondrial precursor	gi27476086	LX LX	1.62	1/
Guin-dependent denydroascorbate reductase 1	dicanacia	NV.	1.54	64
ATD suchase suburit hele chlocoplastic	ATER ORVEL	- V	1.53	30
Execution factor 1.delta 1	FE1D1_ORVSI	v	1.02	50
Ribulose bisphosphate carboxylase small chain, chloroplastic	RBS1_ORYSJ	1	0.95	2(1.85), 24(5.36),
ATP symbase suburit alpha, chippolastic	ATPA ORYSI		0.61	29(1.95), 34(-2.01),
B3 domain_constaining protein 0x03x0120900	V1237_08V51	N	0.52	91(-1.78) 74(-3.93) 83(4.97)
C - des au des Bissies - se Bass - f		1/01101/	0.40	40(0.00), 40(0.00)
Rbulose bisphosphate carboxylaseloxygenase activase,	PCA ORVEL	UNIDIV	0.10	40(2.35), 46(-2.60) 45(-2.30), 48(1.51),
chloroplastic	104_01100		-0.30	51(-2.14)
Pyruvate, phosphate dkinase 2	PPDK2_ORYSJ		-1.76	7 42(2.18) 53(-2.14)
Rbulose bisphasphate carboxylase large chain	RBL_ORYSI	I.	-1.79	44(-10), 35(-2, 49), 54(-2, 44), 55(-2, 36), 56(-2, 18), 57(-2, 20), 63(-1, 80), 65(-2, 04), 66(-1, 85), 67(-1, 96), 68(-2, 04), 69(-1, 59), 71(-2, 57), 77(-1, 76), 90(-2, 07)
Germin-like protein 8-14	GL814_ORYSJ	IX	-1.86	76
Eukaryotic initiation factor 4A-1	F4A1_ORYSJ	V	-2.16	38
Chlorophyll a-b binding protein 2, chloroplastic	CB22_ORYSJ	-	-2.38	59
Chloroplast 23 kDa polypeptide of photosystem II	gl164375543	-	-2.55	62
2-Cys peroxiredoxin BAS1, chloroplastic	BAS1_ORYSJ	IX	-2.85	72(-2.25), 89(-3.44)
Os02g0240300	98115445243	IX	-6.14	44
1: Protein accession number (GI or UniProt). 2: I: metabo protein synthesis/destination, VI: transporters, VII: cell struct X: unclassified. 3: RF3/RF1 ratio as a mean of the individual 4: Spots in which the protein was identified, as well as RF3/R	lism, II: energy ure, VII: signal t values from all RF1 ratio for eac	, III: cell gro ransduction, spots of the th spot (if mo	wth/divisio IX: diseas same proto re than on	n, IV: transcription, V: elstress defense, and ein (if more than one). e).

Chalcone synthase 1 (CHS1_ORYSJ) is a key enzyme of the flavonoid/isoflavonoid biosynthesis pathway, and has been shown to have a strong expression in plants under a variety of stress conditions. Our study also identified it as having a significantly enhanced expression in the leaves.

Copyright - Plant Signaling & Behavior 0:0, e1103406; October 1, 2015; © 2015 Taylor & Francis Group, LLC

Conclusions 2

- High-throughput proteomic 2D-DIGE identified 91 differentially expressed protein spots in the leaves of rice seedling subjected to ambient low-level gamma radiation from a site (field) heavily contaminated by radionuclides from the nuclear (FDNPP) accident site (Fukushima).
- MS analysis, the proteins in these spots were identified, resulting in a total of 59 non-identical proteins amongst the differentially expressed proteins.
- The identified proteins were divided into 10 functional categories, as a means to better visualize which aspects of the rice plant (leaf) metabolism was most affected by the exposure to gamma radiation.
- Overall the majority of differentially expressed proteins were up-accumulated, and that general <u>cell metabolism (nucleotide metabolism, etc.) proteins were the most</u> <u>significantly up-accumulated</u>, while <u>energy metabolism (carbohydrate metabolism,</u> <u>photosynthesis, etc.) ones were more negatively affected</u>, particularly those in the photosynthesis process.
- Moreover, <u>stress and defensive proteins were generally up-accumulated</u>, but curiously, some key proteins for defense against oxidative stress had their expression greatly reduced, even though this is one of the most likely types of stress damage likely to occur in the presence of ionizing radiation.

Journal of Heredity 2014:105(5):723-738 doi:10.1093/jhered/esu025 - © The American Genetic Association 2014

CONTENTS

- Brief Introduction
 -Radiation
 OMICS
 LEAF
 TRANSCRIPTOMICS
 PROTEOMICS
 SEED
- Genes to Metabolites

Exp 3: Seed – Collaboration / Agilent Technologies

Rice Seed – Harvest and experimental strategy

EXP. 1: Comparison between contaminated soil (1) versus clean soil (2).

Rice Seed – Harvest and experimental strategy

Objectives & Workflow

EXP. 1: Comparison between contaminated soil (1) versus clean soil (2).

Workflow

- ◆ Data analysis using GX module of GeneSpring revealed a total of <u>2331</u> differentially regulated genes with p-value ≤ 0.05 and fold change cut off of ≥2.0 in seeds harvested from rice plants grown in the contaminated soil; i.e., exposed to low level internal and external gamma radiation. Among these, <u>1891</u> genes were up-regulated and <u>440</u> genes were down-regulated.
- A total of <u>383</u> metabolites were identified from rice seeds by using GC/MS and LC/MS techniques.
 ANALYSIS IN PROGRESS

Exp 4: Seed – Collaboration / PNU, South Korea

Application Note

A Multi-omic Approach to Reveal the Effect of Low-level Gamma Radiation on Rice Seeds

Application Note

Authors

Hayashi, G¹., Shibato, J¹³., Kubo, A⁴., Imanaka, T¹., Agrawal, GK⁶., Shioda, S¹³., Fukumoto, M¹., Oros, G⁷., and Rakwal, R^{13,8}

Deepak SA¹, Seetaramanjaneyulu. Gundimeda³, Upendra Simha³, and Arunkumar Padmanaban⁹

Tohoku University Showa University Hoshi University MES, Japan Kyoto University RLABB, Nepal HAS, Hungary University of Taskuba, Japan 'Agilent Technologies, Bangalore Abstract This Application Note describes the workflow for identifying the stress-related transcriptomics and metabolomics biomarkers in rice using Agilent multi-omics solutions. We studied the effects of low-level gamma radiation on seeds of rice plants grown in litate farm (ITF) of liste village in Fukushima prefecture, using Agilent sample preparation consumables, instrumentation, and software tools. We generated high quality transcriptomics/metabolomics data, and integrated them using Agilent GeneSpring/Mass Profiler Professional (MPP) 13.1 Software. The combined multi-omics analysis revealed modulation of several metabolic and defense pathways related to the stress response of plants. Our results suggest that the rice plants grown in radionuclide-contaminated soil form seeds with an elevated defense capability against stress. This study demonstrates the Agilent multi-omics workflow for performing gene expression and metabolite analysis on samples deviced form plant sources.

Agilent Technologies

- Helps talk about a problem that is not being widely investigated...
- Collaboration within Japan, and globally...
- ✓ Good science...
- Helps keep Fukushima in the news...

✓ May help Meguro san grow rice one day.

A long road ahead

Ionizing/Non-ioninzing (Sv – Gy)

 Ionizing radiation is radiation composed of particles that carry enough energy to liberate electrons from atoms or molecules without raising the temperature of the material.
 Ionizing radiation is generated through nuclear reactions, by very high temperature (e.g. the corona of the Sun), in particle accelerators, or due to charged particles acceleration in electromagnetic fields produced by natural

Sievert					
Unit system	SI derived unit				
Unit of	Health effect of ionizing radiation				
Symbol	Sv				
Named after	Rolf Maximilian Sievert				

processes, for example, during lightning.

A sievert (Sv) is the SI derived unit of equivalent radiation dose, effective dose, and committed dose. One sievert is the amount of radiation necessary to produce the same effect on living tissue as one gray of high-penetration x-rays. Quantities that are measured in sieverts represent the biological effects of ionizing radiation. **1 sievert is the energy absorbed by one kilogram of biological tissue, which has the same effect as one gray of the absorbed dose of gamma radiation.** Therefore the sievert can be expressed in terms of other SI units as 1 Sv = 1 J/kg.

https://www.translatorscafe.com/cafe/EN/units-converter/radiation-absorbed-dose/24-7/sievert-gray/

Accumulated radiation dose for each day of the experimental periods in July, August, and September of 2012. In each month, the values indicated to the right-hand side of each

point line, indicates the maximum accumulated dose that was measured at the last time point sampled.

> MYDOSE mini electronic pocket dosimeter (model PDM-222-52, ALOKA, Japan)

Additional 3

2. Materials

- 2.1. Seed and Seed Treatment, Plant Material and Storage
- 1. Dry mature seeds of rice (Oryza sativa L.) cv. Nipponbare. (see Note 1).
- Sterilizing solution: 4-fold diluted sodium hypochlorite (Wako Pure Chemicals, Tokyo,
- Japan) solution in Milli Q water, and distilled or Milli Q water.

seedling pot (14 mm x 5 mm x 10 mm:L x W x H).
Growth chamber (Biotron LPH-220S, NK Systems, Osaka, Japan) equipped with white fluorescent light (wavelength 390-500 nm, 150 µmol m²s⁻¹), temperature (25°C), AFFB TH, 2012 and relative humidity (70%).
3'' and/or 4th leaves of two-week-old rice seedlings. (see Note 2).
Liguid nitrogen (N₂).
Sterile/clean mortar and pestle.
Aluminium foil, 2 mL microfuge tubes and 14 mL Falcon to be the transformed at the materials, immediately freeze with liquid nitrogen, and store at -80°C.
Sterile/clean mortar and pestle.
Pour 30 to sterilization solution into a 50-mL falcon tube containing rice seeds.
Sterile/seed the set of the

Our Protocol

- sterilized and washed seeds along with Milli Q water into a glass beaker.

Sow each germinated seed in a neat row (4 rows of 10 seeds each) in the soil, and cover them with soil.

9. Place the tray (containing seedling pots) inside a growth chamber.

WILL FOLLOW 10. Incubate for 2 weeks, with watering everyday from top of the seedlings an in the tray below

- 11. Harvest 3rd and/or 4th leaves, stems (leaf sheath), seed and root.
- 12. Plant materials, such as leaf (in vitro model system), or whole plants (in vivo model system) can be treated with various chemicals or stress factors
- 13. Keep plant material as such or after grinding to fine powder in aluminum foil or tubes and freeze in liquid N2, store at - 80°C deep freezer.
- Copyright Improve Consultancy

Additional 4.1

EXAMPLE OF HOW WE DID ...

Zahurak et al. (2007) Pre-processing Agilent microarray data. BMC Bioinformatics 8: 142

福島の汚染土壌が昆虫の発生に与える影響

秋元信一¹、李楊¹、今中哲二²、佐藤斉³、石田健⁴(1 北大院農、2 京大学原 子炉実験所、3 茨城県立医療大学保健医療学部、4 東大院農学生命科学研究科)

福島第一原子力発電所の事故によって放射性物質が広範に拡散し、現在も放射 性物質によって汚染された土壌が広がっている。こうした汚染土壌は、そこに 生活する生物の生存と繁殖に影響を与えている可能性があるが、こうした評価 はこれまで全く行われてこなかった。汚染土壌が、地表面の微小動物にどのよう な影響を与えるのかを定量化するために、浪江町でサンプリングされた土壌と コケ(スギゴケ)の上にアブラムシの越冬卵を置き、3ヶ月から4ヶ月間、越冬 条件下で被曝させ、加温による孵化の誘導を試みた。

実験には、北海道岩見沢産のトドノネオオワタムシ Prociphilus oriensの卵 (長径 1.2mm)を用いた。本種の卵は、ヤチダモの幹上に露出した形で産み付けら れ、11月から4月中旬まで越冬する。実験室内では湿った濾紙上に置くだけで 90%以上の卵から幼虫が孵化することをこれまでの実験で確認している。試料と して用いたのは、浪江町の民家軒下の雨樋からの雨水が集まる粘土質土壌で、 Cs137 濃度は 2200~3300Bq/g、コケでは 64~105Bq/g であった。土壌は各プラ スチック容器に 8.6g~11.9gを入れ、その上に 100 卵を無作為に撒いた。卵を 撒いた容器は約0℃の冷蔵庫に3~4ヶ月間保ち、その後は、19℃8時間/6℃16 時間の変温環境において孵化を誘導した。3つの実験区((1) 浪江土壌上で4 ヶ月間被曝、(2) 浪江土壌上で3ヶ月間被曝、(3) 浪江のスギゴケ上で4ヶ月 被曝)を設定し、孵化率と孵化日をコントロールと比較した。コントロールと して、北海道の腐葉土(0.01Bq/g)とスギゴケを使用した。土壌容器の一部で は、内部にガラス線量計(ホルダーのままとアルミ箔 0.6mm 捲き)を設置し、ア ブラムシ卵の被曝量を推定した。123日間(約4ヶ月)の被曝量は、約100mGyで、 そのうちベータ線とガンマ線の寄与は約2対1と推定された。一方、スギゴケ からの被曝量は 3.7~9.9mGy で、ほぼガンマ線による影響と推定された。

幼虫の孵化率については、土壌被曝区とコントロール区の間に有意差は認め られず、土壌被曝区からも一見健全な幼虫が孵化した。一方、幼虫の孵化時期 に関しては、コントロール区に比べて、全ての被曝実験区で、孵化は有意に早 まった。この傾向は、スギゴケ>3ヶ月土壌被曝>4ヶ月土壌被曝の順に明瞭 に現れた。このように、放射線被曝はアブラムシ卵の発生過程に何らかの影響 を与えた可能性がある。しかし、土壌被曝区においても、明瞭な形態異常は認 められなかった。現在、放射線が体サイズに対して何らかの影響を与えたかに 関して詳細な調査を進めている。

 放射性物質に汚染された土壌が生物に与える影響は?
 ・土壌中・表面の節足動物・環形動物----分解者
 チェルノブイリでの実験結果(Mousseau et al. 2014, Oecologia 175: 429-437)
 *^{4種類の乾燥落ち葉を} ペットに入れ、土に埋める
 9ヶ月後、葉の分解率を調べる
 ・地表の線量が高いほど、葉の分解率は 低く、葉は分解されにくい

・地表線量が高いほどリター層が厚い。
 このため、葉のミネラル分が土に
 還っていかない。
 森林の生長に悪影響?

処理	容器	卵数/容器	卵数計
①土壌被曝4ヶ月	5	100	500
コントロール	5	100	500
2)土壌被曝3ヶ月	5	100	500
コントロール	5	100	500
③スギゴケ被曝4ヶ月	10	50	500
コントロール	7	50	350

土壌とコケのCs-137濃度

	X0. V		
容器	中身重量、g	Cs137 濃度、Bq/g	Cs-137 総量、Bq
R 1	8.77	3300	29000
R3	9.27	2140	20000
土壌 🚽 R5	9.39	2200	21000
R7	8.59	2400	21000
R 9	11.94	2600	31000
M1	1.40	105	150
コケ <u>1 M3</u>	1.85	63.7	120
Control CR1	9.92	0.01	0.1
	0.02	0.01	0.1

表3. 越冬培地の Cs-137 濃度と総量

			表1. ガラス線:	量計素子読み	取り結果
4ヶ月被曝	容器	ホルタ	でーままの素子	アルミ 0.6	Smm 巻きの素子
	番号	素子番号	読取值、mGy	素子番号	読取值、mGy
r i	R1	337	104.73 ± 0.07	331	62.70 ± 0.05
	R 3	344	54.38 ± 0.10	—	—
土壤 🚽	R5	345	52.15 ± 0.07	—	—
	$\mathbf{R7}$	341	54.29 ± 0.06	335	33.89 ± 0.04
L	R9	350	54.90 ± 0.04	—	_
Г	A1	346	9.87 ± 0.02	—	—
	A3	338	6.85 ± 0.01	332	7.95 ± 0.01
<u>¬</u> +	M1	347	5.10 ± 0.01	—	_
	M 3	339	6.85 ± 0.01	333	5.94 ± 0.01
	T 1	348	3.68 ± 0.01	_	_
L	T 3	340	(4.81 ± 0.01)	334	5.69 ± 0.01
Г	CR1	342	0.390 ± 0.001	336	0.226 ± 0.0004
Control	CA1	343	0.213 ± 0.001	_	_
	CR5	349	0.193 ± 0.0004	_	_
			ホルダーまま	7	アルミ巻
±	壌の卵		50数 mGy	33.9	
– ,	ታの፟		$4 \sim 10 \text{ mGy}$	60~80	
	ントロール	,卵	0.2~0.4 mGv	0.2	

	卵浮	化日結果まとぬ	5
実験区	被曝線量	孵化日 平均値変化	平均値変化∕ Control標準偏差 (M _T −M _c)
4ヶ月被曝 土壌	100mGy	-0.553日	-0.199
3ヶ月被曝 土壌	75mGy	-0.490日	-0.253
4ヶ月被曝 スギゴケ	4-10mGy	-1.064日	-0.443

今後の予測								
実験区	被曝線量	孵化日 平均値変化	平均値変化/ Control標準偏差 (M _T -M _C)					
より強い線量	数Gy	+?	+?					
4ヶ月被曝 土壌	100mGy	-0.553日	-0.199					
3ヶ月被曝 土壌	75mGy	-0.490日	-0.253					
4ヶ月被曝 スギゴケ	4-10mGy	-1.064日	-0.443					

ヤマトシジミの外部照射実験 - 経過報告 -

版内香¹・平良渉¹・矢部巧真²・大瀧丈二^{1,2} ¹琉球大学大学院理工学研究科・²琉球大学理学部 http://w3.u-ryukyu.ac.jp/bcphunit/fukushimaproj.html

福島第一原発事故から2ヶ月後の2011年5月に本研究室がヤマトシジミ(Zizeeria maha)(鱗翅 目シジミチョウ科)の野外サンプリング調査を開始して以来、約5年3ヶ月となる。事故からの経年 を思うことは、私達の研究を振り返ることでもある。この間、研究仲間の出入りがありながらも、継続 的な調査を続けている。その成果は、研究室のホームページで閲覧可能であり、去年の専門研究会では、 内部被曝実験・外部被曝実験をまとめて紹介させていただいたところである。今年は、現在進行中であ る外部照射実験について経過を報告したい。これは、先行研究における飼育や野外サンプリング中に確 認されている「形態的には正常」でありながら「元気のない」個体の科学的検証と原因究明を目的とし ている。本実験は、以下、大きく3段階に分けられる。

① 外部照射環境下での飼育

- 目的▶「元気のない」個体の再現
- 方法▶ 福島県南相馬市から採集した土壌を分量を変えて 10 パックに詰め、10 段階の線源を用意。 このパック上でヤマトシジミを飼育(採卵後 12 日〜羽化)。
 - ▶ 死亡率・全体異常率・平均蛹化日数・平均羽化日数・♂♀率・平均前翅長、等を算出。
 - ゲルマニウム検出器による土壌の放射能測定結果と、GM・シンチレーションサーベイメー タによる線源パック上での放射線測定結果より、外部照射される放射線の「Cs134:Cs137:
 K40」と「γ線: β線」の比率を割り出した。

② 外部被曝個体を用いての飛翔実験

目的▶「元気のない」個体の定量化

- 方法▶ 目の細かな網を筒型に成形し(100×100×260 cm)、上部に蛍光灯を取り付け、天井から 吊るす。走光性のあるヤマトシジミを内部で放ち、飛翔力を観察。
 - ▶ ① で飼育した外部被曝個体のメスを使用。実験時間は10分。各個体、3 日間連続で行う。
 - ▶ 停止時間・歩行時間・飛翔時間を観測。飛翔した個体については、最高到達距離・天井到達の可不可と可ならば要した時間・10 分後の位置、等を記録。
- 結果▶ 最高到達距離・天井到達率・10 分後の位置の3日間の平均値と、個体ごとの積算外部照射 量は、弱い負の相関を示した。

③ 外部被曝個体を用いての発現解析

- 目的▶ 生理的・分子的な原因因子の特定
- 方法▶ リアルタイム PCR を用いて、核遺伝子 *EFI* a をコントロールとするミトコンドリア遺伝子 *COI* の量と発現レベルを相対的に定量(予定)。① で飼育した外部被曝個体を使用。

ヤマトシジミの外部照射実験

琉球大学理工学研究科 阪内香

現在実験中のため、表紙のみで失礼致します。 将来的には適切な形で公表できればと思います。 その際には、下記本研究室のホームページでお知らせします ので、今後とも気に留めていただけますと幸いです。

http://w3.u-ryukyu.ac.jp/bcphunit/

モンシロチョウの内部被曝実験

○平良渉1、垣花恵祐2、大瀧丈二1,2

1. 琉球大学 理工学研究科 海洋環境学専攻、2. 琉球大学 理学部 海洋自然科学科

我々はこれまでに、福島原発事故による放射能汚染の生物影響を調べる材料として小型 のチョウ類であるヤマトシジミ(*Zizeeria maha*)を用いてきた。汚染地域に自生するカタバ ミを餌として用いる内部被曝実験では、比較的低線量な汚染の餌でも異常率や死亡率が増 加することが明らかになった。ヤマトシジミは、体長が小さく、大量に飼育できるため、 飼育を伴う実験に有用である。しかし、小さいがゆえに体液の採取や1個体での放射能濃 度測定が難しいという問題点もある。そこで、ヤマトシジミよりも大きなモンシロチョウ (*Pieris rapae*)を材料に用いて内部被曝実験を行った。モンシロチョウの内部被曝実験では、

「ヤマトシジミ以外の種での低線量内部被曝の影響を調べる」、「体液中の血球数変化を調 べる」、「個体ごとの放射能濃度を測定する」の三つを目的として実験を行った。

モンシロチョウの幼虫はキャベツなどのアブラナ科の植物を食べて生育する。我々は、 殺虫剤の使用されていない放射能汚染餌を得るために、福島県内の土を用いてキャベツを 栽培した。土は沖縄、南相馬(2 地点)、飯館村の計 4 地点から採取し、放射能濃度はそれぞ れ 0.71、1.7K、6.2K、15K Bq / kg であった。それぞれの栽培条件から平均で ND、15.2、 6.9、107.9 Bq / kg のキャベツが得られた。これらのキャベツを用いてモンシロチョウを飼 育した。

それらの飼育結果から、与えたキャベツの放射能濃度が非常に低いにもかかわらず、モ ンシロチョウにおいては放射線による影響が生じた可能性が示唆された。しかし、異常率 が線量依存的に変化していないなど、問題・疑問が残る結果となっており、さらなる検証 や考察が必要である。

福島県の帰還困難区域内における黒毛和牛の病理

○平谷佳代子¹、佐々木淳¹、岡田啓司¹、佐藤至¹、佐藤洋¹、夏掘雅宏²、伊藤伸彦² ¹岩手大学農学部、²北里大学獣医学部

2012 年 9 月に設立された「一般社団法人 原発事故被災動物と環境研究会」は、研究、農家支援、震災復興の3つの課題に沿ってそれぞれ活動を行っており、研究チームは主に東北地方の獣医・畜産系の大学教員らによって構成される。当研究会の主な研究活動は、放射性物質の環境動態と線量評価とともに、現在も帰還困難区域内で飼育・維持されている牛における低線量被ばくの影響評価、牛の畜産物としての安全性評価などである。本研究発表では、帰還困難区域内の黒毛和牛における低線量被ばくの影響を調査するために行った病理検査結果について報告する。

症例は福島第一原子力発電所から半径20km圏内の4か所の牧場で飼育・維持されていた 黒毛和牛47例(約1歳~11歳)で、2013年5月~2015年12月の間にそれぞれ病理解剖を 行った。肉眼的に病変の有無を観察した後、肝臓、脾臓、腎臓、心臓、肺、副腎、膵臓、下垂 体、消化管、骨格筋、卵巣、子宮、眼球、大脳、小脳、脳幹部、脊髄、リンパ節、皮膚、骨髄な どをそれぞれ採材した。採材組織は10%中性緩衝ホルマリン液で固定し、常法に従って組織 標本を作製、必要に応じて特殊染色や免疫染色を行った。一部の皮膚組織は電子顕微鏡観 察に供した。なお、牛の剖検は各農家の承諾と岩手大学実験動物委員会の承認を得て実施 した。

剖検例のうち、起立困難や削痩、食欲不振、眼球突出などの明らかな臨床症状を示して予 後不良と判断した 5 例(10.6%)はリンパ腫であった。これらの症例はいずれも末梢血液中の 牛白血病ウイルス抗体が陽性を示し、病変の肉眼的、組織学的特徴は従来報告されている地 方病性牛白血病と一致した。

特に明らかな臨床症状はないものの鑑定殺を行った 42 例のうち、3 例(約 7.1%)で甲状腺の腫大が認められた。いずれの症例も肉眼的に結節性または嚢胞状病変を認めず、甲状腺の全体がび漫性に腫大していた。組織学的に細胞異型や有糸分裂像の増加はほとんど認められないことから、牛などの家畜においてヨード欠乏によって発症することが知られている非腫瘍性の増殖性病変であるび漫性甲状腺腫と診断した。

皮膚に白斑が散発または多発していた症例では、肉眼的に毛と皮膚の両方または毛のみ が白色を呈していた。組織学的に毛、表皮、毛包などに分布するメラニン色素の減少あるいは 消失が認められ、正常部位と比較してメラノサイト数も有意に減少していた。病変部ではアポト ーシスの発現はほとんど認められなかった。

これまで実施した病理検査結果では、牛白血病、甲状腺の腫大、白斑などがみられたが、 現在のところ牛に対する被ばくの影響を明確に示す病理学的なエビデンスは認めていない。 しかしながら、牛の低線量被ばくの影響評価に関してはさらに継続していく必要があると考え られた。

牛白血病ウイルスの浸潤状況調査結果

乳用牛587戸11,130頭40.9%2009年12月 2010年3月肉用牛558戸9,834頭28.7%2010年12月 2011年4月		検査農場	検査頭数	陽性率	調査期間
肉用牛 558戸 9,834頭 28.7% 2010年12月 ~2011年4月 ・ ・ ・	乳用牛	587戸	11,130頭	40.9%	2009年12月 ~2010年3月
(農林水産省)	肉用牛	558戸	9,834頭	28.7%	2010年12月 ~2011年4月
					(農林水産省)

飼養 牧場	飼養 頭数	剖検 例数	牛白血病 発生数	空間線量 ^ª (<i>μ</i> Sv/h)	平均血中 ^b セシウム濃度 (Bq/kg)
А	27	24	0	0.18	50±11
В	76	17	3 (3.9%)	16.90	518±72
С	28	4	0	0.15	19±3
D	37	2	2 (5.4%)	1.52	182±37
計	168	47	5(3.0%)		

帰還困難区域内の黒毛和牛でみられた疾病

1. 牛白血病

2. 甲状腺腫

3. 皮膚の白斑

飼養 牧場	飼養 頭数	剖検 例数	甲状腺腫 発生数	空間線量 ^ª (<i>μ</i> Sv/h)	平均血中 ^b セシウム濃度 (Bq/kg)
A	27	24	1 (3.7%)	0.18	50 ± 11
В	76	17	2 (2.6%)	16.90	518±72
С	28	4	0	0.15	19±3
D	37	2	0	1.52	182±37
計	168	47	3(1.8%)		
帰還困難区域内の黒毛和牛でみられた疾病

1. 牛白血病

2. 甲状腺腫

3. 皮膚の白斑

飼養 牧場	飼養 頭数	剖検 例数	白斑 発生数	空間線量 ^ª (<i>μ</i> Sv/h)	平均血中 ^b セシウム濃度 (Bq/kg)
А	27	24	0	0.18	50±11
В	76	17	0	16.90	518 ± 72
С	28	4	3 (10.7%)	0.15	19±3
D	37	2	0	1.52	182 ± 37
計	168	47	3(1.8%)		

牛(黒毛和牛)における放射性セシウムの体内動態

Pharmacokinetics if Radiocesium in Wagyu (Japanese black cattle)

○夏堀雅宏*1, 佐藤至*2, 岡田啓司*2, 佐々木淳*2, 佐藤洋*2, 出口善隆*2, 千田広幸*2, 和田成一*1, 柿崎竹彦*1, 上野俊治*1, 寳示戸雅之*1, 小山田敏文*1、菊地元宏*1、味戸忠春*3、伊藤伸彦*1, 村田幸久*4, 佐藤衆介*5, 大澤健司*6

岩手大学*1,北里大学*2,東京大学*3,東北大学*4,宮崎大学*5

(NATSUHORI Masahiro^{*1}, SATO Itaru^{*2}, OKADA Keiji^{*2}; SASAKI Jun^{*2}, SATO Hiroshi^{*2}, DEGUCHI

Yoshitaka^{*2}; CHIDA Hiroyuki^{*2}; WADA Seiichi^{*1}; KAKIZAKI Takehiko^{*1}; UENO Shunji^{*1}; HOJITO

Masayuki^{*1}; OYAMADA Toshifumi^{*1}; KIKUCHI Motohiro^{*1}; AJITO Tadaharu^{*3}; ITO Nobuhiko^{*1}; MURATA,

Takahisa^{*4}; SATO, Shusuke^{*5}; OSAWA, Takeshi^{*6})

【1. はじめに】 福島第一原子力発電所災害で設定された警戒区域内は家畜の移動が制限され、 官邸および行政を通じて殺処分の方針が宣言された。しかしながら飼い主は単なる殺処分ではな く、生かすことで今後の調査・研究で貴重なデータが得られることから、殺処分の際の生体試料 を有効利用する目的で放射性セシウムの体内動態を明らかにする目的で研究を実施した。すなわ ち汚染飼料の継続給餌後、清浄飼料に切り替え、適当な間隔で得られた生体試料中放射性セシウ ム濃度を測定し、その体内動態学的特徴について考察した。

【2. 調査方法】 牛(黒毛和牛・主に繁殖牛)は汚染乾草(最終濃度約100kBq/kg)となるよう に混合した牧草およそ10kgを毎日3週間継続して給与した後、海外から輸入した非汚染の清浄飼料 により給餌しながら継続飼育し、約4週間隔で約3か月間、それぞれ約4頭ずつから得られた各部位 の筋肉および各種臓器・組織の全体または一部を採取・重量測定し、それら臓器・組織の一部を 均一化してプラスチック容器へ圧縮充填し、測定用試料とした。放射性セシウムは、高純度ゲル マニウム半導体検出器で定量し、測定時の重量より臓器・組織中の濃度を算出した。

【3. 結果および考察】 筋肉は全身の70-80%の放射性セシウムを保持していた。また筋肉でも 部位により最大10倍程度のばらつきを認めた。汚染試料給餌後の消失は初期の2-3週間と後期の 60-70日間の半減期を伴う二相性を示し、後期の半減期は農水省が公表している生物学的半減期60 日と同程度であった。筋肉の多くは汚染給餌終了から概ね指数関数的な単調減少を示したが、第 一胃内容は、清浄試料給餌4週間前後を変曲点とした二相性の消失過程(第一相は1週間程度、第 二相では60-70日程度の半減期)が示唆された。この反復投与後の二相性の消失過程はラットでは 観察されていない。一定期間の暴露後でこのような二相性の消失過程が考慮されるのは、ルーメ ン内容物からの速やかな放射性セシウムの消失との関連が考慮された。表1-3ではラットで得られ ている薬物動態学的パラメータ(夏堀ほか、KURRI-KR-18、1997)との比較を掲載した。

Table 1. Pharmacokinetic parameters of Cs in SD rat	s (2 weeks after the dose: CsCl(117mmol/kg=15mg/kg))
---	--

	t1/2(α) hr	T1/2(β) hr	MRT hr	F (bioavailability) %
IV	5.1±1.7	155 ± 16	136±9	-
PO	5.1 ± 3.1	160 ± 34	136 ± 20	87±5
	Vdss I/kg	CLtot ml/min/kg	CLr ml/min/kg	Urinary recovery %
IV	Vdss l/kg 14.6±1.6	CLtot ml/min/kg 1.8±0.2	CLr ml/min/kg 0.7±0.1	Urinary recovery % 40±3

	T1/2(α) hr	T1/2(β) hr	T1/2(π) hr	MRT hr	F (bioavailability) %
IV	2.1±1.2	53±22	289±29	275±22	-
PO	4.0±3.4	68±31	341±18	308±47	91±10
	Vc I/kg	Vdss I/kg	Cltot ml/min/kg	Clr ml/min/kg	Urinary recovery %
IV	6.5±2.7	27.0±2.9	1.7±0.3	1.0±0.2	63±4
PO	5.9±2.1	29.9±4.5	1.6±0.0	1.1±0.2	63±11

(14 weeks afte	(14 weeks after the multiple dose of $^{137}\mbox{Cs}$ (100kBq/day for 21days)								
	T1/2(α) day	T1/2(β) day							
Muscles	14.0±3.1	60.8±7.9							
Parenchymal	8.8±0.6	66.5±3.0							
organs									
GI tract	7.2±1.6	63.7±7.4							
Lymph node	7.1±3.6	82.8±27.7							
Glands	9.9±2.9	70.8±3.9							
CNS	26.3±6.3	-							
Blood	9.9	69.3							
Urine	7.7	69.3	Figur						

Table 3. Elimination half lives of Cs in Wagyu Organs

Figure 1. An example of Concentration - time curve during and after multiple daily administration of

Figure 2. Organ distribution ratio of Cs-137 in Wagyu (The right graph is the ratio excluding the lumen content)

Figure 3. Concentration - time curves of Cs-137 in muscle, blood, and urine samples of Wagyu

今回の調査では消失過程のパラメータが得られたのみであったが、吸収速度定数を含む吸収過程、生体内利用率及び及びクリアランス等を明らかにするとともに、牛の内部被ばくを実測及び EGS5等のシミュレーションで明らかにしたい。

*1Kitasato University, *2Iwate University, *3Obihiro University, *4The University of Tokyo, *5Tohoku University, *6University of Miyazaki

牛(黒毛和牛)における 放射性セシウムの体内動態

O夏堀雅宏*1,佐藤至*2,岡田啓司*2,佐々木淳*2,佐藤洋*2,出口善隆*2, 千田広幸*2,和田成一*1,柿崎竹彦*1,上野俊治*1,寳示戸雅之*1, 小山田敏文*1、菊地元宏*1、味戸忠春*3、伊藤伸彦*1,村田幸久*4, 佐藤衆介*5,大澤健司*6 *1北里大学,*2岩手大学,*3帯広畜産大学,*4東京大学,*5東北大学,*6宮崎大学

原発事故被災動物と環境研究会

```
http://liffn.jp/
```

福島第一原発事故による周辺生物への影響に関する研究会 2016年8月4日@京大原子炉実験所

ラットにおける血中Cs動態(単回投与)

ラットにおける血中Cs動態(単回投与)

血漿-血球間の分布平衡到達時間 静脈内投与後 4-8日

背景・目的

背景:警戒区域内(当時)において、家 畜をただ殺すだけでなく研究に活かし、 畜産業の復興に繋がるようにと、地元農 家から提供

目的:警戒区域内における繁殖雌牛(黒毛和牛)を対象として、放射性セシウム を経時的に測定し、体内分布とその後の 動的変化を調査

牛の飼育方法

飼育場所: 南相馬市小高区の警戒区域内(当時)

飼料(乾草)給餌方法: 汚染飼料約10kg(およそ0.1MBq)/頭/日を 3週間給与し、その後清浄餌に変更し約12 週間まで給与。

採取方法

・安楽死:
 キシラジン、ペントバルビタールを静脈注射して麻
 酔をかけた後、頚動脈カテーテルを留置し全血回収

・生体試料の採取 清浄餌給与直前、清浄餌給与4、9、12週間後に牛 (3~4頭)の筋肉、臓器・その他組織を採取

試料の作成・放射能測定

試料の作成:

試料の作成・放射能測定

放射能測定: 1; 高純度ゲルマニウム半導 体検出器:1時間以上(原則 としてピークチャネルが最低 20カウント以上出るまで)測 定。

2; 測定値の補正

①
 ①
 ④
 ④
 ④
 単
 串
 よび
 定
 ネルギー依存性計数効率補正
 ④
 毎
 日
 こ
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)</l

汚染餌を給餌してから3週間後の体内の¹³⁷Cs放射能の比

放射性セシウムの各臓器組織における 消失半減期

	The second second second							
	α相の半減期(日)				β相の半減期(日)			
	平均值	\pm	標準偏差	CV(%)	平均值	±	標準偏差	CV(%)
筋肉	14.0	±	3.1	22.3	60.8	±	7.9	12.9
実質 臓器	8.8	±	0.6	6.4	66.5	±	3.0	4.5
消化管	7.2	\pm	1.6	21.6	63.7	\pm	7.4	11.6
リンパ節	7.1	\pm	3.6	50.1	82.8	\pm	27.7	33.5
腺組織	9.9	\pm	2.9	28.9	70.8	\pm	3.9	5.5
脳·脊髄	26.3	\pm	6.2	23.6				
生殖器	4.6	\pm	3.1	67.8	33.1	\pm	17.2	52.0
血液: T1/2(α): 9.9日 T1/2(β): 69.3日								
	尿: T1/2(α): 7.7日 T1/2(β): 69.3日							

考察・まとめ

 清浄餌給餌後2週間以内に胃内容物は著減
 4週間前後に変曲点を持つ二相性の消失 (神経組織を除く)

中における¹³⁷Csの消失半減期は初期の2-3週間程度の再分布・消失相とともに、その後の半減期約60-70日の消失相で構成

血液および尿中¹³⁷Csの動態は筋肉を含む
 各臓器組織中濃度に強い相関
 尿中¹³⁷Csは筋肉残留の良い指標

- · 公益社団法人 日本獣医師会
- ・ 社団法人 日本草地畜産種子協会
- ・日本全薬工業
- ・共和化工株式会社
- 南相馬市桜井勝延市長
- 南相馬市役所経済部
- ・福島県中小企業同友会
- ・福島県酪農連合会

 そして何よりも研究牧場と多くの牛を提供していただいた 畜主様とそのご家族に心から感謝いたします

福島県警戒区域内で継続飼育される黒毛和牛の被ばく状況

Estimation of Radiation Exposure of Wagyu (Japanese black cattle) in Fukushima caution zone

○夏堀雅宏^{*1}, 佐藤至^{*2}, 岡田啓司^{*2}, 佐々木淳^{*2}, 佐藤洋^{*2}, 出口善隆^{*2}, 千田広幸^{*2}, 和田成一^{*1}, 柿崎竹彦^{*1}, 上野俊治^{*1}, 寳示戸雅之^{*1}, 小島貴文^{*1}, 伊藤伸彦^{*1}, 村田幸久^{*3}, 佐藤衆介^{*4}, 大澤健司^{*5} 岩手大学^{*1}, 北里大学^{*2}, 東京大学^{*3}, 東北大学^{*4}, 宮崎大学^{*5}

(NATSUHORI Masahiro^{*1}, SATO Itaru^{*2}, OKADA Keiji^{*2}; SASAKI Jun^{*2}, SATO Hiroshi^{*2}, DEGUCHI Yoshitaka^{*2}; CHIDA Hiroyuki^{*2}; WADA Seiichi^{*1}; KAKIZAKI Takehiko^{*1}; UENO Shunji^{*1}; HOJITO Masayuki^{*1}; KOJIMA Takahumi^{*1}; ITO Nobuhiko^{*1}; MURATA, Takahisa^{*3}; SATO, Shusuke^{*4};

OSAWA, Takeshi^{*5})

【1. はじめに】 福島第一原発事故の旧警戒区域内では今でも数百頭の牛が毎時数 µ Svから数 +μSvの環境中で継続的に飼育されている。我々は2012年に現地畜産農家とともに「原発事故被災 動物と環境研究会(現在名)」を設立し、150頭ほどの牛を対照に調査・研究活動を行なっている。 ここでは、これまで得られた成果のうち主に牛の外部被ばく線量に関する話題を中心に報告する。 【2. 調査方法】調査対象地区は空間線量率の異なる3種類の牧場(福島県浪江町,大熊町,小丸 地区)とし、もっとも空間線量の高い小丸地区では牧場内にメッシュ状に定めた各地点の地表面か ら0, 50, 100cmの高さをサーベイメータ(電離箱: ALOKA)で2-3か月ごとに空間線量率を測定した, また各測定ポイント周辺の5ポイントについて、土壌の表層から5cmまでの汚染状況も調査した。 また汚染牧野の一部について線量率の平面分布を把握するために、ガンマカメラ(日立:HGD-E1500) で観察・記録した。外部被ばく線量は対象牛(黒毛和牛)の頚部にベルトと一緒に装着す る形で、ガラスバッジによる線量をモニターした。記録開始は2013年12月からであるがもっとも線 量の低い地区は除染対象地区となったため2014年の10月を最後に測定中止した。通常1月のモニタ ーに使用するガラスバッジ(GD:千代田テクノル)を2~3ヶ月程度の間隔でモニターした。また, 最も高い線量率の牧場のそばに設置されたモニタリングポスト(MP)による線量率(2012年4月3日 より測定値が公開)と比較し、経産省ならびに東京電力による発表されたI-¹³¹I,¹³⁴Cs,¹³⁷Csの放出 率、IAEAの技術資料から核種による汚染土壌からの空間線量寄与率を参考に初期線量率、初期線量 からの積算線量、ならびに核種による線量率及び積算線量寄与率の推移を推定した。

【3. 結果および考察】ガラスバッジによる2-3か月間の積算線量から計算した測定期間中 (2013年12月~2015年12月)の平均空間線量率は比較的高い線量率の牧場でおよそ20µSv/hから, そのほぼ2年後には10µSv/hに半減していた。線量率の半減期に関しては他の地区の結果も同様で あった。観察期間中の28か月間の積算線量は高・中・低線量率の牧場でそれぞれ約315mSv,44mSv, 5.4mSvと推定された。また,高線量率の牧場の空間線量率の推移はMPで観察された推移にほぼ一致 していた。このデータからの外挿と,原子炉事故当時の最大初期線量率を主要核種(¹³¹I,¹³⁴Cs, ¹³⁷Cs)の放出割合をそれぞれ50:1:1と仮定した結果(表1),初期の空間線量率は最大で約341µ Sv/hであったと推定された(Fig.1)。また,事故当時から現在までのおよそ1,830日間で和牛の積 算線量は最大1,037mSvと推定された(Fig.2)。この1Svを超える積算線量は、東日本大震災で報告 されている哺乳動物の被ばく線量としては最大である。このうち,¹³¹Iによる外部被ばく線量は実 効線量で最大約88mSvと推定され,この¹³¹Iによる外部被ばくは初期の30日間でおよそ¹³¹Iによる総 被ばく線量(88mSv)の93%(82mSv)であり,これは事故から30日間の積算外部被ばく線量 (107mSv)の58%が¹³¹Iに起因することを示した(Fig.2)。

以降,線量率が漸減するに従い積算線量の上昇率はやや低下したものの,¹³¹Iによる外部被ば くの寄与が¹³⁴Csに置換されるまでにはおよそ160日を要すること(Fig. 3),また外部被ばくの寄与 率が¹³⁷Csに置換されるまでにはおよそ2,850日(7.8年)を要する(Fig. 3)ことが示唆された。

表1.	核種と	それらの推定放出比,	推定土壤污染	染,および空間線	量寄与率
		物理学的半減期	放出比*	推定土壤汚染	$mSV/h/MBq/m^2$
核種	锺	T1/2(day)		MBq/m^2	空間線量寄与率
Cs-1	34	753	1	4.8	5.4
Cs-1	37	11,003	1	4.8	2.1
I-1	31	8.02	5 0	240	1.3

*東京電力の報告による。

ウェザリング効果(WE)の寄与分も若干程度示唆された(Fig.1)。本研究によって,原子炉事 故からの放出量(Cs・I)に基づく土壌汚染を推定することによって実測された空間線量に概ね対 応する線量率曲線,積算線量曲線,および積算線量に対する核種寄与率曲線が推定された。なお, 原子炉災害以降,初期の5ヶ月は¹³¹Iが,その後現在までは¹³⁴Csが積算線量としての外部被ばくの主 因であり,現在の総線量に対する¹³⁴Csの寄与率は54%,¹³¹Iは4%程度と推定される。

Figure 1. Estimated dose rate in Omaru farm since March 15th, 2011 Figure 2. Estimated cumulative dose based on Fig.1

Figure 3. Relative contribution of the representative radionuclides (¹³¹I, ¹³⁴Cs, ¹³⁷Cs) on cumulative external radiation exposure to Wagyu since the explosion of the Fukushima Daiichi Nuclear Plant (March 15th, 2011)

**Kitasato University, **Twate University, **The University of Tokyo, **Tohoku
University,
**5u

^{*5}University of Miyazaki

警戒区域内で継続飼育される 黒毛和牛の被ばく状況

○夏堀雅宏*1,佐藤至*2,岡田啓司*2,佐々木淳*2,佐藤洋*2, 出口善隆*2,千田広幸*2,和田成一*1,柿崎竹彦*1,上野俊治*1, 寳示戸雅之*1,伊藤伸彦*1,村田幸久*3,佐藤衆介*4,大澤健司*5

岩手大学*1,北里大学*2,東京大学*3,東北大学*4,宮崎大学*5

ー般社団法人 <u>原発事故被災動物と</u>環境研究会

http://liffn.jp/

福島第一原発事故による周辺生物への影響に関する研究会 2016年8月4日@京大原子炉実験所

- これらの牛は放射性物質の動態や低線量率長期被曝の影響
 に関する貴重な研究対象である。
- ・我々は2012年に現地の畜産農家とともに「原発事故被災動物と環境研究会」を設立し、調査研究活動を行なっている。

空間線量の推移と外部被曝の評価

方法:1) O牧場(試験区16ha)を46m四方で74に区切り
各ポイントの中心点で空間線量を継続して測定
2) O牧場の牛40頭に線量計を装着し、連続計測

研究対象牧野の空間線量率中央値の推移

土壌汚染の不均一性

線量モニタ期間:2013.12~現在

1. 牛の外部被ばく調査 TLD・ガラスバッチ

RE Xy /m 02.0501-0531
 RE Xy /m 02.0501-0531
 RE 太郎
 RE 太郎
 RE 太郎
 RE 太郎
 RE 太郎
 RE 太郎
 RE 太郎

線量モニタ期間:2013.12~2016.03

線量モニタ期間:2013.12~2016.03

積算線量:2013.12~2016.05

初期線量の推定

・事故当初の空間線量率:少なくとも現在の10倍以上か?

初期線量の推定

事故当初の空間線量率:少なくとも現在の10倍以上

ヨウ素 131 とセシウム 137 の大気放出量に関する試算

福島第一原子力発電所の事故により放出された放射性物質の量を正確に推定することが困難な状況ではあったが、原子力安全委員会は、4月12日、事故の全容を把握する一環として、独立行政法人日本原子力研究開発機構の協力を得て、福島第一原子力発電所から大気中に放出されたヨウ素131とセシウム137の大気放出量の推定的試算値を公表した。3月11日から4月5日までの大気中への一部の核種の放出放射能総量として、ヨウ素131が1.5×10¹⁷Bq、セシウム137が1.2×10¹⁶Bq(5月12日に1.3×10¹⁶Bqと修正)という推定的試算値が得られた。

表1 東京電力による大気中放出量の推計(単位 PBq)

希ガス(0.5MeV 換算値)	I-131	Cs-134	Cs-137	INES 評価 ^{注1}
約 500	約 500	約10	約10	約 900

(注1) INES(国際原子力指標尺度)評価は、放射能量をよう素換算した値。ここでは限られた核種でしか評価できていないため、I-131とCs-137を使用して、事故の規模を評価した。Cs-137のみ評価に加えている。2015年2月25日渡辺悦司・山田耕作

2011/3/15日からの日数

汚染土壌からの空間線量寄与率

					mSV/h/MBq/m ²	
核種	T1/2(yr)	T1/2(day)	λ (/day)	MBq/m^2	空間線量寄与率	放出比
Cs-134	2.0652	753	9.2E-4	4.8	5.4	1
Cs-137	30,167	11003	6.3E-5	4.8	2.1	1
I-131		8.02	0.0864	240	1.3	50

汚染土壌からの空間線量寄与率

					mSV/h/MBq/m ²	
	T1/2(yr)	T1/2(day)	λ (/day)	MBq/m^2	空間線量寄与率	放出比
Cs-134	2.0652	753	9.2E-4	4.8	5.4	1
Cs-137	30.167	11003	6.3E-5	4.8	2.1	1
I-131		8,02	0.0864	240	1.3	50
500 U/NSH 50 50 50 5 0	- 341.75 - Cs-134 - MP 1000 2000 3 2011/3/15	-Cs-137T I-131V 3000 4000 50 5日からの日数	otal VE Exbosite 000 6000	2000 1800 1600 1400 1200 1000 800 600 400 200 0 0 10	To 000 2000 3000 4000 Days since 2011.03	tal Cs-137 Cs-134 I-131 5000 6000

核種による外部被ばく線量寄与率

総 括

- ・ガラス線量計と空間線量率(サーベイメータやモ ニタリングポスト)の値に大きな相違は認めな かった
- ・原子炉事故からの放出量(Cs・I)に基づく土壌汚
 染量を仮定することによって実測された空間線量
 に概ね対応する線量率曲線が推定された
- I-131による外部被ばくは初期の30日間でおよそ
 I-131による被ばく線量(推定値最大88mSv)の93%,全被ばく線量の60%に達した

総括

もっとも汚染された小丸地区の黒毛和牛のこれまでの外部被ばく線量(積算)が推定された

Year	1	2	З	4	5
mSv	362	581	761	908	1037

- ・原子炉災害以降、初期の2ヶ月まではト131が、その 後現在まではCs-134が外部被ばくの主因であり、 現在の総線量に対するCs-134の寄与率は54%、ト 131は4%程度である
- ・放射性Csによる外部被ばくの寄与率がCs-134から Cs-137に逆転するまで、およそ2850日(7.8年) を要する
- ・ウェザリング効果・内部被ばく等を含めたより正確 な被ばく線量と将来予測される線量を求めたい

最後に

もっとも汚染された小丸地区でも外部被ばく線量は
 宇宙ステーション滞在で受ける線量率
 (1mSv/day)程度・・・宇宙開発への貢献

・牛の放牧は農地保全に貢献

一般的な肉牛の使用期間は3年未満

・汚染牧野は育成・繁殖に供し、出荷前の数か月間は
 汚染の低い地区での仕上げ期間利用しての試験的な
 飼育・出荷を継続することで農地の除染・農地保
 全・イノシシ・熊対策に利用できる復興対策へ。

謝 辞

- · 公益社団法人 日本獣医師会
- 社団法人 日本草地畜産種子協会
- ・日本全薬工業
- ・共和化工株式会社
- ・日立アロカメディカル株式会社 計測システム営業部
- ・株式会社 千代田テクノル
- ·藤田保健大学 若松 一雅教授
- ・南相馬市桜井勝延市長
- 南相馬市役所経済部
- ・福島県中小企業同友会
- · 福阜県略農連合会

そして何よりも研究牧場と多くの牛を提供していたた農家の皆様とそのご家族に心から感謝いたします

福島原発事故により放出された放射性核種(⁹⁰Sr, ²³⁸Pu,²³⁹⁺²⁴⁰Pu)のヒト乳歯への蓄 積の推移に関する研究 第1報

○井上一彦¹⁾,山口一郎²⁾,佐藤 勉³⁾,村田貴俊¹⁾,今井奨¹⁾,野村義明¹⁾,花田信弘¹⁾
1)鶴見大学歯学部探索歯学講座,2)国立保健医療科学院 生活環境研究部
3)日本歯科大学東京短期大学

【目的】核実験等や東京電力福島第一原発事故で環境に放出された放射性核種の人体への移行を調べる ために日本全国より乳歯を集め、乳歯中での放射性核種(⁹⁰Sr,²³⁸Pu,²³⁹⁺²⁴⁰Pu)の濃度を調査し、これ までに収集したヒトの歯での濃度と比較し、東京電力福島第一原発事故による影響を検証すると共に原 発事故前後の推移を明らかにする.

【対象と方法】平成24年12月(原発事故後)より,本研究に賛同が得られた全国歯科診療所施設に資料(研究計画説明書,同意書)と収集ビンの配布をし,乳歯を生年別,地域別に収集継続中である.乳歯収集状況は秋田;20,宮城;10,山形;50,福島;3,東京都;487,神奈川県;30,千葉県;20,埼玉県:247,静岡県;32,愛知県30,大阪府;50,広島県:10,愛媛県:412,福岡;10,熊本県:96,鹿児島県:60,沖縄県:12,総計1579本である.(平成28年4月15日現在).今回は原発事故前の推移を明らかにするために,①埼玉県(2003年生年,35本),②東京都(2003年生年,57本),③愛媛県新居浜市(2003年生年,45本),④愛媛県八幡浜市(2003年生年,29本),⑤埼玉県(2004年生年,34本),⑥東京都(2004年生年,54本),④愛媛県大崎浜市(2004年生年,48本)⑧愛媛八幡浜市(2004年生年,34本),⑥東京都(2004年生年,54本),⑦愛媛県新居浜市(2004年生年,埼玉13本)の9試料の測定調査を実施した結果について報告する.⁹⁰Sr,²³⁸Pu,²³⁹⁺²⁴⁰Puの分析方法:上記乳歯,第三大臼歯を歯石やカリエス,軟組織等をマイクロモーターやスケーラー等を使って可及的に除去した後,乾燥させ8時間電気炉(TMF500,MORITA[®])でアルミナるつぼに入れ,焼結させ灰化し,深型メノウ乳鉢(東京硝子器械)を使って粉末にして,53meshの篩を通過したものを試料とした.⁹⁰Sr 計測は文部科学省放射能測定法シリーズ「放射性ストロンチウム分析法」,²³⁸Pu,²³⁹⁺²⁴⁰Puの計測は同「環境試料中プルトニウム迅速分析法」により実施した.

【結果】²³⁸Pu, ²³⁹⁺²⁴⁰Pu:すべての試料(④,⑧以外測定)において検出限界未満であった. ⁹⁰Sr:⑨成人第三大臼歯より 9.6±2.2mBq/g・C a の ⁹⁰Sr が検出された.乳歯群では⑥東京都のみ 6.8 ±2.1m Bq/g・C a の ⁹⁰Sr が検出された(図 1,いずれも H28.04 時点換算で計数誤差も示す).

【考察】ストロンチウム90がいくつかの試料から検出されているが,第三大臼歯は福島第一原発事故 以前に収集されたものであり,核実験由来のものと推察される.乳歯に関しても収集は事故後であるが, 歯冠形成期は胎生期から出生後であると考えられるのでバックグラウンドとしての蓄積であり,事故前 のデータが得られ,これまでに計測した1970年以降の生年の乳歯と比べても減少していることが確認 された.本研究は科学研究費助成事業で実施されている.

歯の種類	歯の支ができる 時期 《歯胚移成》	歯が硬くなる時期 :在反応:	末が出てく 希時期 (朝出)		見肉の図
上获到中切函(A) 下销 //	胎生7週	胎生4~4.5月	57月	日報	enerana e 2330 Alton
上错礼侧切面:8) 下端 2	胎生7週	龄年4月	7~9∄		CANNUL STOR
E 编制天南(C) 下張 2	胎生7 5週	脸生5月	16~18A		(Hanamar (H)
上張第一到白道(D) 小弦 //	胎生3週	胎生5週	12~14 / 1	1	
頼第二乳口道(E) 「頼」 /	胎生10週	胎生6週	2024月	下顎	E Color
 胎生] 一妊娠=を示して 月] 一出産後何ヶ月で萌 月(小い図) 一二の図では	・ ハはす、例: 古生7週 出するかを示しして(暗闇が存しまにくた		Kone 1. augusta – J	n F30	「海豚がたくつすっているとみたの地

・福島原発で放出された放射能量

37万テラベクレル 37万×10¹²ベクレル (保安院) 63万×10¹²ベクレル (原子力安全委員会)

・チュルノブイリで放出された放射能量
 520万テラベクレル 520万×10¹²ベクレル

福島の7倍

・1945年~1998年世界中で2419回の核実験が実施された

・世界の放射線被曝調査 高田純著 講談社

広島型原爆の35000発分

核実験では I-131 : 650000PBq (65万×10¹⁵ベクレル), Cs-137:910PBq (910×10¹⁵ベクレル) Sr-90 : 604PBq (604×10¹⁵ベクレル) 合計651514×10¹⁵ベクレル

(国連委員会報告「放射線の線源と影響」1993年版)

福島の1000倍

報道発表	文部科学省 WIN TRY OF COLLEGATION. UNIT TRY OF COLLEGATION.
	平成23年9月30日
文部科学省	iによる、プルトニウム、ストロンチウムの
	核種分析の結果について
●本調査において、ブルの最高値が検出された。	・トニウム 238、239+240 及びストロンチウム 89 及び 90 の沈着量 各箇所における 50 年間積算実効線量
●本調査において、ブル の最高値が検出された [。] ①ブルトニウム 238	・トニウム 238、239+240 及びストロンチウム 89 及び 90 の沈着量 各箇所における 50 年間積算実効線量 : 0. 027nSv
●本調査において、ブルの最高値が検出された。 の最高値が検出された。 (1)ブルトニウム 238 (2)ブルトニウム 239+	トニウム 238、239+240 及びストロンチウム 89 及び 90 の沈着量 各箇所における 50 年間積算実効線量 : 0. 027mSv 240: 0. 12mSv
●本調査において、ブルの最高値が検出された。 の最高値が検出された。 ①ブルトニウム 238 ②ブルトニウム 239+ ③ストロンチウム 89	- トニウム 238、239+240 及びストロンチウム 89 及び 90 の沈着量 各箇所における 50 年間積算実効線量 : 0. 027nSv 240: 0. 12nSv : 0. 61 μ Sv 〈0. 00061mSv〉
●本調査において、ブルの最高値が検出された。 の最高値が検出された。 (1)ブルトニウム 238 (2)ブルトニウム 239+ (3)ストロンチウム 89 (4)ストロンチウム 90	- トニウム 238、239+240 及びストロンチウム 89 及び 90 の沈着量 各箇所における 50 年間積算実効線量 : 0. 027nSv 240 : 0. 12nSv : 0. 61 μ Sv 〈0. 00061mSv〉 : 0. 12mSv
 ●本調査において、ブルの最高値が検出された。 ①ブルトニウム 238 ②ブルトニウム 239+ ③ストロンチウム 89 ④ストロンチウム 90 (参考 2) 	- トニウム 238、239+240 及びストロンチウム 89 及び 90 の沈着量 各箇所における 50 年間積算実効線量 : 0. 027nSv 240: 0. 12nSv : 0. 61 μ Sv 〈0. 00061mSv〉 : 0. 12mSv
 本調査において、ブルの最高値が検出された。 ①ブルトニウム 238 ②ブルトニウム 239+ ③ストロンチウム 89 ④ストロンチウム 90 (参考 2) 本調査において、セジ 	 トニウム 238、239+240 及びストロンチウム 89 及び 90 の沈着量 各箇所における 50 年間積算実効線量 : 0. 027nSv 240 : 0. 12nSv : 0. 61 µ Sv (0. 00061mSv) : 0. 12mSv : 0. 12mSv
 本調査において、ブルの最高値が検出された。 ①ブルトニウム 238 ②ブルトニウム 239+ ③ストロンチウム 89 ④ストロンチウム 90 (参考 2) 本調査において、セジ50 年間積算実効線量 	・トニウム 238、239+240 及びストロンチウム 89 及び 90 の沈着量 各箇所における 50 年間積算実効線量 : 0. 027nSv 240 : 0. 12nSv : 0. 61 µ Sv (0. 00061mSv) : 0. 12mSv ·ウム 134、137 の沈着量の最高値が検出された各箇所における
 本調査において、ブルの最高値が検出された。 ①ブルトニウム 238 ②ブルトニウム 239+ ③ストロンチウム 89 ④ストロンチウム 90 (参考 2) 本調査において、セジ50 年間積算実効線量 ③セシウム 134 	・トニウム 238、239+240 及びストロンチウム 89 及び 90 の沈着量 各箇所における 50 年間積算実効線量 : 0. 027mSv 240 : 0. 12mSv : 0. 61 µ Sv (0. 00061mSv) : 0. 12mSv ·ウム 134、137 の沈着量の最高値が検出された各箇所における : 710mSv

【目的】

核実験等や東京電力福島第一原発事故で 環境に放出された放射性核種の人体への移行を調べる ために日本全国より乳歯を集め, 乳歯中での放射性核種(⁹⁰Sr, ²³⁸Pu,²³⁹⁺²⁴⁰Pu) の濃度を調査し, これまでデータと比較し原発事故前後の 推移を明らかにする.

【対象と方法】 平成24年12月(原発事故後)より, 全国歯科診療所施設に資料を配布をし, 乳歯を生年別,地域別に収集継続中である. .

Prefectual distribut	ion of volu	unteers who donated their	milk teeth	
(Total;178)	9)			Referi di concercito. Nesero : Pignorran, Pic De mere
BRACHER BRACHER BOOK				The second se
I I is a solid transformed and the solid transformed and transformed and transformed and the solid transformed and transforme			to a Constitute to an a statistical de la constitución de la constitución de la constitución de la constitución	the second with the second
 A set of the set of		- Can berry In 1967 2 35 Charts Film	1783), 28 (Born in 1	The second secon
				All the stand of the set of the s
Content and han to 5 stores of When complemented they have		cliffe concentrations in Japanese m	allik socila before ske	Parkershilling marcheser
				and because and the second states
		And December 2010	(4) Constant (4), (4) (4) Constant (4), (
			1XX	
Figure > Forder rout die				
and the second				
			The second	
1000~2000生在	<u>A</u>	Akita	20	
1000 2000 2 -	В	Miyagi	10	
1/894		Tamagata	50	
	F	Saitama	330	
	F	Kanagawa	30	
	G	Chiba	20	
	Н	Shizuoka	32	
	I	Aichi	50	
	J	Osaka	70	
	К	Hiroshima	10	
	L	Ehime	422	
	М	Fukuoka	10	
	N	Kumamoto	106	
	0	Kagoshima	70	
	Р	Okinawa	12	19
	Q	Fukushima	3	

90Sr, ²³⁸Pu, ²³⁹⁺²⁴⁰Puの分析方法 乳歯, 第三大臼歯を歯石やカリエス, 軟組織等を マイクロモーターやスケーラー等を使って可及的に除去した後, 乾燥させ8時間電気炉(TMF500,MORITA[®])でアルミナるつぼに 入れ, 焼結させ灰化し, 深型メノウ乳鉢(東京硝子器械) を使って粉末にして, 53meshの篩を通過したものを試料とした. ⁹⁰Sr計測: 文部科学省放射能測定法シリーズ 「放射性ストロンチウム分析法」, ²³⁸Pu, ²³⁹⁺²⁴⁰Puの計測: 同「環境試料中プルトニウム迅速分析法」により実施した.

【結果】 ²³⁸Pu²³⁹⁺²⁴⁰Pu: すべての試料が検出限界未満であった. (④, ⑧未測定). ⁹⁰Sr: ⑨成人第三大臼歯 9.6mBq/g·Ca (H28.04時点換算). 乳歯群

【考察】

・第三大臼歯は福島原発事故以前に収集されたものであり, Sr-90は核実験由来のものと推察される.

 Sr-90が2004年東京都乳歯群のみ検出され,他試料が検出限界未満になったことは個人ベースでの蓄積が,偶発的に生じた結果であることは否定できないが,他試料に関して,サンプル数が少なく(20g以下)検出限界数値が上昇したので、 東京都のみの地域差が生じたものではないと考えている.
 乳歯に関しても収集は事故後であるが,歯冠形成期は胎生期から出生後であると考えられるのでバックグラウンドとしての蓄積であり、事故前のデータが得られた.

今後の研究計画

乳歯の形成:

胎生期から出生時にかけて行われるので 原発事故による影響は生年が2011年の乳歯 を収集後検証予定である。 生年別,地域別に20g以上の試料を揃え, 測定調査を実施していく。 被災地での収集を強化するか 共同研究を推進していく。

本研究は科学研究費助成事業で実施されている.

生体測定による筋肉中放射性セシウムの体内動態推定の可能性

鈴木正敏¹、木野康志²、鈴木秀彦³、石黒裕敏³、漆原佑介⁴、渡邉智³、齊藤陽介³、小堤知行³、 曽地雄一郎⁵、西清志⁵、桑原義和¹、沼辺孝³、関根勉⁶、福本学^{1,7}

東北大 加齡研¹、東北大院 理学研究科²、宮城畜試³、量研機構放医研 福島再生支援本部⁴、仙 台家保⁵、東北大 高教機構⁶、東京医科大 分子病理⁷

我々は肉用牛頸部筋肉の体表面に Nal サーベイメーターを密着させて計測 (生体測定)する方 法を確立し、筋肉の生物学的半減期が約 1 ヶ月である事を明らかにした。放射性セシウムは長 半減期核種であるため、体内動態を予測する事は意義がある。特に一定期間の測定によって、 測定期間以外の体内動態が推測できると有意義である。本研究では、放射性セシウムを含む汚 染飼料を給与した肉用牛において血中放射能濃度測定と生体測定を行い、一部の実測値を使っ て推定した放射性セシウム動態が、実測値に対してどの程度高い再現性を示すかについて検討 した。肉用牛への給与試験は、平均 1,158Bq/kg の放射性セシウムを含む汚染稲わらを 63 日間給 与した後に、放射性セシウムを含まない清浄飼料に切り換えて 83 日間飼養した。試験期間中、 血中放射能濃度と生体測定を毎週行った。

血中放射能濃度、及び生体測定値は汚染飼料給与開始翌日から増加し、血液では1ヶ月後、筋 肉では40日以降にピークを迎えた。清浄飼料に切り換えた後は、血中濃度は速やかに、生体測 定値は緩やかに減少し、それぞれ2相性の減少を示した。そこで、2コンパートメントモデルを 利用して放射性セシウム動態を推定した。推定値が実測値に対して高い再現性を示す条件は、 (1)汚染試料給与中は臓器内への蓄積が飽和するまでの測定値のみで推定が可能だが、給与開始 後1週間程度の初期データは不要、(2)飽和した後は清浄飼料に切り換えて最低でも1ヶ月間の 測定が必要、となることが分かった。この結果は放射性物質摂取後の定期的な計測によって、 正確な内部被ばくの状況を把握できる可能性を示唆する。

【まとめ】

- 生体測定と血液モニタリングによって、同一個体で筋肉と 血液中の放射性セシウム動態を調べる事が可能となった。
- 放射性セシウムの摂取状況によって、血液-筋肉間の相関が 異なる事が明らかとなった。
- 放射性セシウム動態を生体測定や血液モニタリングの一部のデータを使って再構築する事が可能であった。

東京電力福島第一原子力発電所事故の被災動物線量評価

Dosimetry method of animals affected by Fukushima Nuclear Power Plant No.1 accident

○林 剛平¹ 漆原 佑介^{1,2} 鈴木 正敏¹ 遠藤 暁³ 今中 哲二⁴ 福本 学¹ (東北大学加齢医学研究所¹ 放射線医学総合研究所² 広島大学大学院工学研究院³ 京都大学原 子炉実験所⁴)

<u>1. はじめに</u>

被災動物包括的線量評価グループでは、東京電 力福島第一原子力発電所 (FNPP) 近傍の動物の 採材を2011年8月から行っている。そのうち、 FNPPから半径20km圏内に含まれる旧警戒区域 において、2011年8月29日から2013年3月7日の間 に安楽殺された204 頭のウシについてParticle and Heavy Ion Transport Code System (PHITS) \succeq Geo Information System (GIS)を用いて線量評価 を行った(Sato et al., 2012)。FNPP事故における初 期被ばくの、重要な核種はTe-132/I-132、I-131、 Cs-134、Cs-137である (Imanaka et al., 2012)。採 材されたウシの全ての臓器からCs-134、Cs-137が 検出され、20頭のウシの腎臓からTe-129mが検出 された。Te-129mに対するTe-132は環境中で14.5 倍沈着したことが報告されている(Tagami et al., 2013)。本発表では、同ウシに関し初期被ばくも 含めた、採材日までの外部、内部被ばく量を推定 する。本解析は、FNPP事故の哺乳動物への内・ 外部被ばくの寄与、短・長半減期核種の寄与を比 較し、生物影響を解析する際のベースとなる知見 を提供するものである。

<u>2. 方法</u>

ICRP が公開している参照動物のファントム を PHITS を用いて作成し、PHITS による換算係 数を検証した(ICRP Pub.108)。ウシに関して、 大人、子、胎児のファントムを作成し換算係数 を計算した。ウシの臓器をゲルマニウム半導体 検出器で測定し、内部被ばくの入力値を得た。 米国エネルギー省・核安全保障局の行った航空 機サーベイから I-131、Cs-134、Cs-137 の汚染地 図を作成し、文科省が行った土壌調査から Te-129mの汚染地図を作製し、その地図とウシ採 材地点を GIS を用いて重ねることで外部被ばく 量の入力値を得た。体内放射能濃度は、事故後か ら飽和状態であったと仮定し、物理的減衰のみを 考慮して積算被ばく線量を算出した。

<u>3. 結果</u>

PHITSでは、ICRPの換算係数を8割程度の精 度で再現することが出来た。胎児は、母親の体に よって、土壌からの被ばくが半減し、母親の体内 から被ばくが、自身の内部被ばくと同程度追加さ れることが分かった。ウシの被ばく量の最大値は、 200 mGyであった。内部被ばくを放射性セシウ ムに限った場合、初期の30日間の放射性セシウ ムによる外部・内部被ばくの合計は全体の0.47-0.84を占め、短半減期核種に依る外部被ばくは、 放射性セシウムによる被ばくの多くても一月分 程度という結果になった。一方、腎臓に集積した Te-132/I-132を考慮に入れた場合、その被ばくは 多い場合で、放射性セシウムによる内部被ばくの 7年分、外部被ばくの3年分という結果になった。

図. ウシの行動調査と汚染地図の重ね合わせ

東京電力福島第一原子力発電所事故の被災動物線量評価

Dosimetry method of animals affected by Fukushima Nuclear Power Plant No.1 accident

〇林 剛平¹ 漆原 佑介^{1,2} 鈴木 正敏¹ 遠藤 暁³ 今中 哲二⁴ 福本 学¹ (東北大学加齢医学研究所¹ 放射線医学総合研究所² 広島大学大学院工学 研究院³ 京都大学原子<u>炉実</u>験所⁴)

	Adult	Infant	Fetus	Sampling date
Minamisouma	24	1	1	2011/8/31 - 2011/9/13
Futaba	0	1	0	2013/2/1
Okuma	8	9	2	2012/6/27 - 2013/3/7
Tomioka	29	2	1	2012/3/6 - 2013/2/14
Kawauchi	58	16	3	2011/8/29 - 2011/12/13
Naraha	43	3	3	2011/12/27 - 2012/5/25
Total	162	32	10	2011/8/29 - 2013/3/7

Cattle detected ^{129m}Te in kidney

	Adult	Infant	Fetus	Sampling date					
Minamisouma	5	1	0	2011/8/31 - 2011/9/13					
Kawauchi	13	1	0	2011/9/6 - 2011/11/15					
Total	18	2	0	2011/8/31 - 2011/11/15					
*Fukushima Daiichi Nuclear Power Plant (FNPP)									
 Sampling site of Cattle detected ¹³⁴Cs and ¹³⁷Cs Sampling site of Cattle detected ^{129m}Te, ¹³⁴Cs, and ¹³⁷Cs 									

Red circle shows ex. evacuation area 20km from FNPP Gray circle shows 10km from FNPP

		Deer			Rat		
Convention Factor		PHITS ^a	ICRP108	PHITS/ ICRP108	PHITS	ICRP108	PHITS/ ICRP108
External	¹³⁴ Cs	5.20*10 ⁻⁵	6.1*10 ⁻⁵	0.85	1.12*10 ⁻⁴	1.2*10 ⁻⁴	0.94
[(µGy/day) per	¹³⁷ Cs	1.93*10 ⁻⁵	2.2*10 ⁻⁵	0.88	4.19*10 ⁻⁵	4.5*10 ⁻⁵	0.93
(Bq/m^2)]	^{131}I	1.18*10 ⁻⁵	1.5*10 ⁻⁵	0.79	2.73*10 ⁻⁵	3.1*10 ⁻⁵	0.88
	¹³² I	7.35*10 ⁻⁵	8.9*10 ⁻⁵	0.83	1.56*10 ⁻⁴	$1.8*10^{-4}$	0.87
	¹³² Te- ¹³² I	7.97*10 ⁻⁵	$1.0*10^{-4}$	0.80	$1.69*10^{-4}$	$1.8*10^{-4}$	0.94
Internal	¹³⁴ Cs	1.37*10 ⁻²	1.5*10 ⁻²	0.91	3.84*10 ⁻³	4.1*10 ⁻³	0.94
[(µGy/day) per	¹³⁷ Cs	7.55*10 ⁻³	8.2*10 ⁻³	0.92	3.81*10 ⁻³	4.1*10 ⁻³	0.93
(Bq/kg)]	^{131}I	5.50*10 ⁻³	6.0*10 ⁻³	0.92	2.95*10 ⁻³	3.1*10 ⁻³	0.95
	¹³² I	2.35*10 ⁻²	$2.5*10^{-2}$	0.94	9.25*10 ⁻³	9.4*10 ⁻³	0.98
	¹³² Te- ¹³² I	2.61*10 ⁻²	3.0*10 ⁻²	0.87	1.03*10 ⁻²	1.1*10 ⁻²	0.94

TABLE 1 Conversion Factors of Fetus Phantoms								
		Fetus in mother	Fetus outside	ratio				
External	¹³⁴ Cs γ	4.26*10 ⁻⁵	9.04*10 ⁻⁵	0.472				
[(μ Gy/day) per (Bq/m ²)]	¹³⁷ Cs γ	1.58*10 ⁻⁵	3.16*10 ⁻⁵	0.501				
Internal	¹³⁴ Cs γ	1.28*10 ⁻²	5.78*10 ⁻³	2.22				
[(μ Gy/day) per (Bq/kg)]	¹³⁷ Cs γ	4.94*10 ⁻³	2.17*10 ⁻³	2.28				
	$^{134}Cs \beta$	2.05*10 ⁻³	2.06*10 ⁻³	1.003				
	¹³⁷ Cs β	3.18*10 ⁻³	3.18*10 ⁻³	1.002				
	$^{134}Cs \beta + \gamma$	14.9*10 ⁻³	7.84*10 ⁻³	1.89				
	$^{134}Cs \beta + \gamma$	8.12*10 ⁻³	5.35*10 ⁻³	1.52				
	134 Cs β + γ	8.12*10 ⁻³	5.35*10 ⁻³	1.				

TABLE 2Conversion Factors of Cattle								
		Adult	Infant	Fetus				
Exte [(µGy	rnal dose CFs γ ν/d) per (Bq/m2)]							
	¹³⁴ Cs	5.45*10 ⁻⁵	7.00*10 ⁻⁵	4.26*10-5				
	¹³⁷ Cs	2.05*10 ⁻⁵	2.58*10 ⁻⁵	1.58*10-5				
	¹³¹ I	1.30*10 ⁻⁵	1.65*10 ⁻⁵	9.21*10-				
	132 Te- 132 I	8.34*10 ⁻⁵	1.09*10 ⁻⁴	6.42*10-				
Intern [(µGy	al dose CFs β+γ γ/d) per (Bq/kg)]							
	¹³⁴ Cs	1.38*10 ⁻²	1.15*10 ⁻²	1.49*10-2				
	¹³⁷ Cs	7.62*10 ⁻³	6.74*10 ⁻³	8.12*10-				
132 Te- 132 I	(body from kidney)	6.67*10 ⁻⁵	6.33*10 ⁻⁵	-				
132 Te- 132 I (kie	lney from the other one)	1.17*10 ⁻⁴	1.57*10 ⁻⁴	-				
¹³² Te- ¹³² I	(kidney)	1.23*10 ⁻²	1.10*10 ⁻²	-				

TABLE 3
Deposition Density of Major Nuclides in Cattle Behavioral Area

	¹³⁴ Cs	s, ¹³⁷ Cs [Bo][m2]	1	³¹ I [Bq/m ²]	129	^{om} Te [Bq/n	n ²]	Ratio	
	min	max	ave	min	max	ave	min	max	ave	¹³¹ I/ ¹³⁷ Cs	^{129m} Te/ ¹³⁷ Cs
Minamisouma	2.28*10 ⁵	4.23*10 ⁵	3.02*10 ⁵	9.87*10 ⁵	2.37*10 ⁶	1.59*10 ⁶	2.34*10 ⁵	5.13*10 ⁵	3.37*10 ⁵	5.3	1.1
Futaba	1.19*10 ⁶	5.33*10 ⁶	2.84*10 ⁶	9.43*10 ⁶	2.09*10 ⁷	1.49*10 ⁷	1.34*10 ⁶	1.80*10 ⁶	1.50*10 ⁶	5.2	0.53
Ookuma	1.05*106	4.49*10 ⁶	2.16*10 ⁶	1.28*10 ⁷	3.75*10 ⁷	2.37*10 ⁷	1.01*10 ⁶	2.75*10 ⁶	1.82*10 ⁶	11	0.84
Tomioka	2.48*10 ⁵	3.71*10 ⁶	1.35*10 ⁶	6.90*10 ⁶	2.72*10 ⁷	1.31*10 ⁷	5.00*10 ⁵	1.92*10 ⁶	1.12*10 ⁶	9.7	0.83
Kawauchi	1.93*10 ⁵	8.97*10 ⁵	3.72*10 ⁵	1.63*10 ⁶	3.67*10 ⁶	2.45*10 ⁶	1.49*10 ⁵	3.87*10 ⁵	2.63*10 ⁵	6.6	0.71
Naraha	1.06*10 ⁵	7.32*10 ⁵	2.75*10 ⁵	3.19*10 ⁶	9.64*10 ⁶	5.15*10 ⁶	1.99*10 ⁵	5.20*10 ⁵	3.35*10 ⁵	19	1.2
Total	1.06*10 ⁵	5.33*10 ⁶	1.22*10 ⁶	9.87*10 ⁵	3.75*10 ⁷	1.01*10 ⁷	1.49*10 ⁵	2.75*10 ⁶	8.96*10 ⁵	9.4	0.87
											Table 3

結果

- ・短半減期核種に依る外部被ばくは、放射性 セシウムによる被ばくの多くても一月分程度
- ・腎臓に集積したTe-132 / I-132を考慮に入れた場合、その被ばくは多い場合で、放射性セシウムによる内部被ばくの7年分、外部被ばくの3年分

テルルとセシウムの土壌から植物への移行係数と 移行係数が内部被ばく線量評価に及ぼす影響

藤原 慶子(京大原子炉)

[はじめに]

東京電力福島第一原子力発電所事故により環 境中に放出された放射性セシウムや放射性ヨ ウ素によって一般公衆が受けた内部被ばく線 量は政府や国際機関等によって評価・報告さ れている。これに対し、放射性テルルについ ては1年未満の短半減期核種が多く、また、 線量の推定に必要な環境動態に関する知見が 不足していることから、評価の対象とされて いない。しかしながら、^{127m}Teの半減期は109 日、^{129m}Teの半減期は33.6日であり、事故後 1年間の内部被ばく線量に寄与した可能性が ある。したがって、本研究では、実験的に土 壌から植物へのテルルの移行係数を決定する とともに、国際原子力機関(IAEA)が報告して いる移行係数も併せて用い、葉・根菜の摂取 に伴って生じた内部被ばく線量を評価するこ とを目的とする。

[実験]

1. 栽培

安定テルル(Te 1000, Wako)と安定セシウム (CsCl 99.9 %, Wako)を純水で水溶液にしたも のがそれぞれ 1 mg/dry-soil-kg となるように乾 燥させた 4 種類の土壌に添加し、土壌の調製を 行った。安定テルルと安定セシウムを添加して 1 週間後の土壌と 4 週間後の土壌 150 g-200 g を容器(Incu Tissue 72×72×100mm, SPL LIFE SCIENCES)に入れ、ラディッシュ(Raphanus sativus var. sativus)と小松菜 (Brassica rapa var. perviridis)の苗を容器 1 つに付き 1 本ずつ植え つけた。苗を植えつけた容器をバットに並べ、 1.5-2 cm 程の高さまでイオン交換水を入れ、 暗 8 時間、明 16 時間、22 ℃の人工気象器内で 約2週間-2ヶ月間栽培した。バットの中のイ オン交換水がなくなると 1.5-2cm 程の高さま でイオン交換水を補充した。

2. 収穫

小松菜については、根元の土壌を純水で洗い落 とした後根を切り落とし、葉・茎を試料とした。 ラディッシュについては、根の土壌を純水で洗 い落とし、側根を切り落とした後、根と葉・茎 を試料とした。(図1)

図1 試料採取方法

3. 測定

全ての試料を、乾燥器(CD.15S, いすゞ製作 所)で乾かした後粉砕し、70%の HNO3 (電子 工業用;関東化学株式会社製) 5 ml と 30% H₂O₂ (電子工業用;関東化学株式会社製) 1.2 mlを加えマイクロ波加圧分解装置(Topwave, アナリティックジャパン)で約 100 mgの試料 を湿式分解し液体サンプルにした。粉末試料が 100 mg に満たない場合は採取した全量を使用 し液体試料にした。液体試料を純水で希釈し、 ICP-MS(HP-4500, Yokogawa, Japan)で試料 中のテルルとセシウム濃度を測定した。

[被ばく線量評価]

1. 放射性テルルの放出量比

福島第一原発の事故における^{127m}Te と^{129m}Te の放出量は 1.1×10¹⁵ Bq と 3.3×10¹⁵ Bq であった ことが原子力安全・保安院により報告されてい る¹⁾ことから福島第一原発からの両同位体の 放出量比^{127m}Te:^{129m}Te は 1:3 とした。

2. 各核種の¹³⁷Cs に対する沈着量比

事故後の Saito らの研究において 2011 年 6 月 14 日時点の放射能に換算された土壌中の 129m Te と 137 Cs の土壌沈着量比の地域別の分布 図が詳細に示されており、南方向の地域では、 137 Cs に対して 129m Te の沈着量の比率が高かっ たことが報告されている $^{2)}$ 。そのため、評価に おいて土壌が測定された地域の中で 137 Cs に対 する 129m Te の沈着量の比率が高かった地域を 地域 A、測定地域全体を地域 B と設定し内部 被ばく線量評価の算出を行った。 127m Te、 129m Te、 134 Cs の 137 Cs に対する沈着量比は Saito らの研 究報告の値を基に算出した。

3. テルルとセシウムの移行係数

国際原子力機関(IAEA)の Technical Report Series 472³⁾のテルルとセシウムの移行係数と 土壌実験において求めた移行係数を用いた。

4. 線量係数

国際放射線防護委員会(ICRP)のPublication72⁴⁾ に勧告された、^{127m} Te, ^{129m}Te, ¹³⁷Cs, ¹³⁴Csの生 後3ヶ月乳児、1歳児、5歳児、10歳児、15 歳児、成人に対する経口摂取による線量係数を 使用した。

5. 内部被ばく線量評価算出方法

単回摂取での食物 lg 当たりの預託実効線量 E(τ)/g は以下の式①により算出した。

 $E(\tau)/g = C \times e(\tau)$ -1

C:対象となる核種の収穫日における農作物
 中濃度(Bq/g)

e(τ):対象となる核種の線量係数

継続摂取での食物 1 g 当たりの預託実効線量E(τ)/g は以下の式②により算出した。

 $E(\tau)/g = \int C_0 \cdot e(\tau) \cdot exp(-T_{1/2}/t) dt - 2$

C₀:対象となる核種の収穫日における農作物
 の濃度(Bq/g)

· (24/8)

e(τ):対象となる核種の線量係数

T_{1/2}:対象となる核種の半減期(days)

t:収穫日から経った日数(days)

積分期間:t=0(day)から t=365(days) [結果]

1. 移行係数

本研究で得られたテルルとセシウムの移行係 数を表1に示す。

2. 内部被ばく線量評価

放射性セシウム (¹³⁴⁺¹³⁷Cs)に対する放射性テ ルル (^{127m+129m}Te)の預託実効線量比の値及び 実際に収穫された農作物中のセシウム濃度を 用いて単回摂取及び継続摂取 (1 年間)の預託 実効線量を算出した。土壌実験の移行係数を 用い実際に収穫された農作物の¹³⁷Cs、¹³⁴Cs の濃度を用いて算出した結果を例として表 2 に示す。

[結論]

植物へのテルルの移行係数は土壌の種類や pH など化学的性状により大きく異なってお り、IAEA TRS 472 の値に比べ1桁以上小さな 値であった。実験的に求めた移行係数および IAEA の提示する移行係数を用い、葉・根菜の 摂取により生じる内部被ばく線量を算定する と、移行係数の差異により放射性テルルによ る内部被ばく線量には、葉・根菜の摂取時に 最大で 100 倍程度の差が生じることが分かっ た。さらに、これらの作物を事故後1年間継 続的に摂取した場合、放射性テルルは放射性 セシウムに対して最大12倍程度の内部被ばく 線量を与えていた可能性が示された。以上の 結果から放射性テルルによる内部被ばく線量 は、土壌から植物への移行係数によって大き く変動し、放射性セシウムと比べ無視できな いレベルであることが明らかにされた。

参考文献

 経済産業省; 原子力安全に関する IAEA 閣 僚会議に対する日本国政府の報告書, Available at:

http://www.meti.go.jp/earthquake/nuclear/backdro p/pdf/app-chap04-2.pdf(閲覧 2016年2月1日) 2) K. Saito, I. Tanihata, M. Fujiwara, T. Saito, S. Shimoura, T. Otsuka, Y. Onoda, M. Hoshi, Y. Ikeuchi, F. Takahashi, N. Kinouchi, J. Saegusa, A. Seki, H. Takemiya and T. Shibata; Detail deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi nuclear power plant accident. *J. Environ. Radioactiv.*, 139, 308-319 (2015).

3) International Atomic Energy Agency; IAEA Technical Report Series 472. Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments, Vienna (2010).

4) International Commission on Radiological Protection; ICRP Publication 72, Ann. ICRP, 26, 26-27 (1995).

表1 土壌実験で得られたテルルとセシウムの移行係数

		テルル			セシウム			
==	根	9.2×10 ⁻³	-	3.0×10 ⁻²	1.1×10 ⁻²	-	2.7×10 ⁻¹	
フティッシュ	葉	8.6×10 ⁻³	-	3.2×10 ⁻²	2.3×10 ⁻²	-	7.6×10 ⁻¹	
小松菜		7.4×10 ⁻³	-	5.1×10 ⁻²	6.7×10 ⁻³	-	3.9×10 ⁻¹	

表2 土壌実験の移行係数を用い、実際に収穫された農作物の濃度を用いて算出した預託実効線量

曲化油	拉種	預託実効線量 (μSv)						
展作物	核性	種 1 歳児 5 歳児 10 歳児 15 歳 37 Cs 15.3 12.4 23.9 34.7 29m Te 3.5 1.8 1.8 1.2 $^{127m+129m}$ Te) 18.9 14.2 25.8 35.9 37 Cs 283.0 228.3 442.4 641.2 29m Te 9.8 5.0 5.0 3.2 $^{127m+129m}$ Te) 292.8 233.3 447.4 644.4 37 Cs 11.1 8.9 13.9 18.3 29m Te 2.4 1.3 1.0 0.6 $^{127m+129m}$ Te) 13.5 10.2 14.9 18.9 37 Cs 60.7 49.0 76.1 100.2 29m Te 2.5 1.3 1.0 0.6 $^{127m+129m}$ Te 2.5 1.3 1.0 0.6	15 歳児	成人				
_	¹³⁴⁺¹³⁷ Cs	15.3	12.4	23.9	34.7	38.5		
ホウレンソウ1	^{127m+129m} Te	3.5	1.8	1.8	1.2	1.0		
農作物 ホウレンソウ1 (^{13,}) ホウレンソウ2 (^{13,}) カブ1 (¹³) カブ2 (¹³)	$(^{134+137}Cs)+(^{127m+129m}Te)$	18.9	14.2	25.8	35.9	39.5		
- ホウレンソウ2 -	¹³⁴⁺¹³⁷ Cs	283.0	228.3	442.4	641.2	711.1		
	^{127m+129m} Te	9.8	5.0	5.0	3.2	2.7		
	$(^{134+137}Cs)+(^{127m+129m}Te)$	292.8	233.3	447.4	644.4	713.8		
	¹³⁴⁺¹³⁷ Cs	11.1	8.9	13.9	18.3	22.0		
カブ1	^{127m+129m} Te	2.4	1.3	1.0	0.6	0.5		
	$(^{134+137}Cs)+(^{127m+129m}Te)$	13.5	10.2	14.9	18.9	22.5		
	¹³⁴⁺¹³⁷ Cs	60.7	49.0	76.1	100.5	120.8		
カブ2	^{127m+129m} Te	2.5	1.3	1.0	0.6	0.6		
	$(^{134+137}Cs)+(^{127m+129m}Te)$	63.2	50.2	77.1	101.1	121.4		

まとめ 移行係数は土壌の性質により大きな差が見られ 今後、栽培する植物種、栽培条件等により 大きく変動することが考えられる 様々な条件で移行係数を求め、 移行係数に関連する要因を明らかにする必要がある

 ・沈着量比(存在比)
・移行係数

 (TRS 472,土壌実験)
 ・預託実効線量換算係数

これらの値を使用し、
葉菜や根菜摂取時の放射性セシウム(¹³⁴⁺¹³⁷Cs)に対する 放射性テルル(^{127m+129m}Te)の預託実効線量比を求める

移行係数の差異による預託実効線量の違いを確認

単回摂取:摂取日=収穫日(収穫開始日) 継続摂取:収穫開始日から1年間摂取 収穫開始日:葉菜→2011/4/30 根菜→2011/10/30 実際収穫した農作物→実際の収穫日 これらのデータ及び条件を用い 預託実効線量比 と 預託実効線量を求めた (セシウムに対する比) (線量)

葉菜・根菜における預託実効線量 実際に収穫された葉菜及び根菜の134Csと137Cs濃度 濃度 (Bq/kg) 農作物 収穫日 地域 ¹³⁴Cs ¹³⁷Cs ホウレンソウ 60 59 2011/5/4 Α カブ 38 39 2011/5/14 ホウレンソウ2 1100 2011/4/13 1100 В カブ2 2011/3/30 220 200 ホウレンソウとカブは南方向で収穫され、 ¹³⁷Csの濃度が検出された中で平均的な値を示したホウレンソウとカブ ホウレンソウ2とカブ2は福島県全域で収穫され、 ¹³⁷Csの濃度が検出された中で平均的な値を示したホウレンソウとカブ ホウレンソウ2: 事故後の食品における暫定規制値は500Bq/kgであり、 この濃度を超える農作物は市場に出回っていないが、事故後の流通を 考えると自作の農作物を摂取している可能性があるため、高濃度であるが この値で計算を行った。

3か月乳児 1歳児 5歳児 10歳児 15歳児 成人 根菜*1 - 31.0 31.0 45.4 45.0 54.1 葉菜*2 - 27.7 27.7 50.6 55.1 61.1 *1 根菜は、ニンジンと大根 *2 葉菜は、ホウレンソウ、キャベツ、白菜 *1 *
根菜*1 - 31.0 31.0 45.4 45.0 54.1 葉菜*2 - 27.7 27.7 50.6 55.1 61.1 *1 根菜は、ニンジンと大根 *2 葉菜は、ホウレンソウ、キャベツ、白菜
葉菜*2-27.727.750.655.161.1*1 根菜は、ニンジンと大根 *2 葉菜は、ホウレンソウ、キャベツ、白菜
*1 根菜は、ニンジンと大根 *2 葉菜は、ホウレンソウ、キャベツ、白菜

用いる移行係数の違いにより

放射性テルルによる預託実効線量について ホウレンソウで40倍程度 カブで100倍程度 放射性セシウムと放射性テルルによる 預託実効線量について ホウレンソウで1.1-8.3倍 カブで1.4-17.4倍

御静聴ありがとうございました

福島第一原発事故に由来した土壤中Csホットパーティクルの測定

遠藤 暁^{1,*},中村俊介² 杉尾健次郎¹,梶本 剛¹,田中憲一¹ 1広島大学大学院工学研究科、²広島大学大学院工学部

2011年3月11日に発生した大地震が引き金となり発生した福島第一原子力発電所事故に より、大量の核分裂性物質が放出された。放出された放射性物質は、東北地方から北関東 の広い地域に降下し放射能汚染を引き起こした。気象研・五十嵐等は、2011年3月14日に 集塵したダスト中にSiO₂を主成分とした放射性Csのホットパーティクルを検出しCs-ball と呼んでいる。また、筑波大・佐藤等は、汚染土壌中にCs-ballと同様のホットパーティ クルを検出している。Cs-ballは不溶性であり、除染作業による再浮遊による人体への付着 や再浮遊粒子の呼吸による取り込みによる被ばくなどが懸念されている。

本発表では、NHK 七沢氏より提供を受けた、 2013年6月に浪江町-南相馬市で採取された土壌 中の放射性Csのホットパーティクルの有無を調 べ、確認されたホットパーティクルを抽出し測 定した結果について紹介する。

イメージングプレートによる測定の結果、幾 つかの土壌試料中にCsホットパーティクルがあ ることがわかった。Csホットパーティクルはイ メージングプレートとGMサーベイメータを用い て抽出した。抽出したホットパーティクルの顕 微鏡写真を図1に示す。抽出したホットパーテ ィクルからのβ線をSi検出器(ORTEC、 CL-015-150-300)を用いて1000000秒間測定 した。また、試料なしのバックグラウンドス ペクトルを差し引いたCsホットパーティクル からのβ線の測定スペクトルを、PHITSモンテ カルロコードを用いた計算で推定したスペク トルと比較することで、放射性Cs放射能及び ⁹⁰Sr放射能の定量を試みた。

β線スペクトルから推定された放射性 Cs 放 射能は、Ge 検出器を用いて決定した値 71Bq と ほぼ一致した。また、測定した Cs ホットパー ティクル 1 個中の ⁹⁰Sr 放射能として 0.09 Bq

図1 Cs ホットパーティクルの顕微鏡写真

図2 β 線スペクトルを放射性 Cs と 90 Sr の応答で フィットした例

が得られた。⁹⁰Sr と¹³⁷Cs 比: ⁹⁰Sr/¹³⁷Cs=0.0015 は、2011 年に実施された 2 kmメッシュ調査の ⁹⁰Sr/¹³⁷Cs と同程度であった。

- □ 2016年2月23日、筑波大学Cs-ballの研究 班のミーティングに参加
- □土壌のイメージングプレート分析を行う と、ホットスポットとして確認でき、粒 を抽出してみると1粒で数k-数10Bqの放射 能を持っている
- □土壌に沈着しているCs-ball(ホットパー ティクル(HP))が確認されている

□ Cs-HPの汚染濃度はどの程度か? □ Cs-HPに含まれる放射能は?

2013年NHK土壤探取場所

・土壌汚染濃度の測定の詳細は省略

・試料採取場所と測定結果のみ紹介

ID	探取場所	GF	2S	2011年	2013年 空間線量率
S-1	南相馬市	37.6452747	140.953478	140-300	
S-2	浪江駅前	37.4925864	140.99019	-	
S-3	浪江町末永宅前	37.4885297	141.007861	-	
S-4	浪江町岩倉宅前	37.4858081	140.98453	-	
S-5	浪江町赤宇木集会所	37.5670714	140.801308	2210*-3030	
S-6	浪江町津島支社	37.5607131	140.753175	510	
S-7	浪江町小丸	37.4656714	140.930053	-	30 µ Sv/h
S-10	双葉町山田玉澤宅前	37.42681	140.974575	10100	25 µ Sv/h
S-11	田村市都路中学校	37.43677	140.792426	81.9	
S-12	田村市常葉中学校	37.4399731	140.644078	30.3	
S-13	浪江町田代宅前	37.49948	140.95317	-	

ID	Compling point	137Cs invento	ory (KBq/m²)
שו	Sampling point	2013/June	2011
S-1	南相馬市	148	89(3月)、 140-300(11月)
S- 2	浪江駅前	32	-
S- 3	浪江町末永宅前	131	-
S-4	浪江町岩倉宅前	3260	-
S- 5	浪江町赤宇木集会所	3020	2210-3030
S-6	浪江町津島支社	1640	510
S-7	浪江町小丸	16800	-
S-10	双葉町山田玉澤宅前	10972	10100(双葉町山田)
S-11	田村市都路中学校	53	81.9
S-12	田村市常葉中学校	36	30.3
S-13	浪江町田代宅前	6504	-

* 双葉町山田の値を示す

ロホットパーティクル密度

ID	採取場所	個数	Cs-ball (1/m²)
S-1	Minamisoma City	-	-
S- 2	Namie Station	-	-
S- 3	Namie Suenaga house	-	-
S-4	Namie lwakura house	21	3868
S- 5	Namie Akogi	8	1105
S-6	Namie Tsushima	1	138
S-7	Namie Komaru	19	2625
S-10	Futaba Yamada	6	829
S-11	Tamura Miyakoji JHS	-	-
S-12	Tamura Tokoha JHS	-	-
S-13	Namie Tashiro house	11	1520

□ 134,137Csを確認 + 125Sb

□ Ge検出器: ¹³⁴Cs,¹³⁷Cs, ¹²⁵Sb検出 □ ¹²⁵Sbは統計誤差大

	Radioac†	ivity (Bq/p	article)
¹³⁴ Cs	15. 9	±	0. 1
¹³⁷ Cs	71. 1	±	0. 1
¹²⁵ Sb	0. 4	±	0. 33

		¹³⁷ Cs inventory (KBq/m ²)	averaged Cs- HP activity (Bq)	Cs-HP (KBq/m ²)	Cs-HP (1/m ²)
S-1	南相馬市	148	-	-	-
S-2	浪江駅前	32	-	-	-
S-3	浪江町末永宅前	131	-	-	-
S-4	浪江町岩倉宅前	3260	33	77	3868
S-5	浪江町赤宇木集会所	3020	78	86	1105
S-6	浪江町津島支社	1640	108	15	138
S-7	浪江町小丸	16800	56	146	2625
S-10	双葉町山田玉澤宅前	10972	54	45	829
S-11	田村市都路中学校	53	-	-	-
S-12	田村市常葉中学校	36	-	-	-
S-13	浪江町田代宅前	6504	61	92	1520

・土壌汚染濃度の1/20-1/200程度

□ 主成分:Si、0 (元素の分布はあまりない)

□ Si検出器(空乏層厚:~400μm) □ 遮蔽体内で、1000000s測定

2

0

0.5

0

Energy (keV)

1.5

500 Channel

1000

□抽出した3つのHPの放射能

	¹³⁷ C	s (Bq)	¹³⁴ C	s (Bq)	⁹⁰ Si	• (Bq)	⁹⁰ Sr/ ¹³⁷ Cs
NHK-4-1	60	±0.04	13	±0.04	0.09	±0.03	0.0015
NHK-4-2	77	±0.05	17	±0.05	0.15	±0.03	0.002
NHK- 4-3	82	±0.03	18	±0.03	0.09	±0.023	0.001

 Cs-ballのβ線測定:⁹⁰Srからのβが見えている
Ge測定:^{134,137}Cs放射能の他¹²⁵Sbを検出
モンテカルロ計算:測定スペクトルをほぼ再現
Si測定:^{134,137}Cs放射能:Ge測定とほぼ一致 ⁹⁰Sr放射能の決定が可能 ⁹⁰Sr放射能の決定が可能

一今後一

2016年6-7月に実施した土壌について 分析を進める予定

チェルノブイリ事故による生物影響に関するロシア語文献の紹介

今中哲二 京都大学原子炉実験所

チェルノブイリ原発事故が起きたのは、東西冷戦末期の 1986 年 4 月で、いわゆる "鉄のカーテン" が健在だった。ロシア語辞書を片手にチェルノブイリ事故資料の watching をはじめた私は、ソ連国内

の汚染データが全くと言っていいほど発表されなか ったので、ひょっとして何にも研究がされていないの では、といぶかっていた。私がはじめてチェルノブイ リを訪問する機会を得たのは 1990 年の夏だった。ベ ラルーシやウクライナの研究所を訪問し、実は、単に 発表されていなかっただけで、大規模なチェルノブイ リ研究が行われていたことを知った。

この度の専門研究会では、ソ連科学アカデミー・動物生態学形態進化学研究所の Krivolutsky らの論文「チェルノブイリ原発周辺での事故後初期段階(1986-1988年)における放射能汚染の動物相への影響」(1999)を翻訳して紹介する。

図1に、Krivolutsky らが調査したチスタガロフカ 村、コパチ村、レレフ村を含む、チェルノブイリ原発 周辺の概略図を示す。表1は、チェルノブイリ周辺で 観察された脊椎動物の病理的変化のまとめである。

	観	R(D+15)、mR/h	四四泊县		組織	
調査対象	察	事故から 15 日後の	败収禄里	正時	EX II基	油膵
	数	土壤表面線量率	rad	月丁加戰	育願	月午 川联
		1986年				
<哺乳類>						
草食動物(ヌートリア、リス、	10	15~.00	150-100			
ネズミ類)	16	10, 00	190, -100	_	_	_
雑食(ブタ)	5	$30 \sim 40$	$300 \sim 400$	+	+	+
肉食 (イヌ)	11	$15 \sim 240$	$150 \sim 2500$	+	+	+
鳥類(14種)	51	$15{\sim}60$	$150{\sim}600$	—	—	—
		1987年				
<哺乳類>						
草食動物(リス、ネズミ類)	26	$10{\sim}60$	$100 \sim 600$	—	—	—
肉食 (イヌ)	2	$30 \sim 80$	$500 \sim 1200$	+	+	+
<鳥類>						
水鳥(ガチョウ、カモ)	9	$30 \sim 80$	$200{\sim}560$	+	—	—
水辺の鳥(サギ)	2	$30 \sim 80$	$400 \sim 600$	+	—	+
定住の鳥(ハト、カラス)	15	$30 \sim 80$	$350{\sim}600$	+	—	—
渡り鳥(ミヤマカラス、モズ、	14	30~80	$200 \sim 560$	_	_	_
セキレイ、アトリ、ウグイス)	14	00 - 00	200 - 500			

表1. チェルノブイリ 30km 圏の動物と鳥類における病理変化の存在

注. "+";変化有り、"-";変化なし. 100rad=1Gy.

福島原発事故による周辺生物への影響に関する専門研究会

チェル/ブイリ事故による生物影響に関する ロシア語文献の紹介

今中哲二 京都大学原子炉実験所

2016年8月4日 京都大学原子炉実験所

6.4. 土壌無脊椎動物への放射線影響

事故後2ヶ月以内に、原子炉から3-7km地点の森林のリター層に生息する無脊椎動物の数は、 30分の1に減少し[6.14],繁殖は深刻な影響を受けた(幼虫と若虫はいなくなった)。約30Gyの 被曝線量(土壌中に設置された熱ルミネッセンス線量計から推定した)は、無脊椎動物群落に破壊 的な影響を与え、卵や初期生育段階にある個体を死に至らしめ、成体には生殖障害を起こした。比

6.6. 他の陸生動物に対する放射線影響

1986年の8月と9月に野生動物と家畜の一部を屠殺し解剖が行われた。イヌとニワトリは慢性放 射線症候群の兆候が見られた(体重の減少、蓄積脂肪の減少、リンパ節、肝臓、脾臓の質量増加、 肝臓、脾臓における血腫の形成、及び大腸内膜の肥厚化)。ニワトリの巣に卵は無く、また卵巣に も卵は認められなかった。

1986年の秋にかけて、小型齧歯類の数が2分の1から10分の1にまで減少した^{W注9}。事故発生後5ヶ月間に(小型齧歯類が)吸収した放射線量の推定値はガンマ線については12から110Gy、 ベータ線については580から4500Gyと推定された。動物の個体数は1987年の春までに回復をし ていたが、これは主に比較的放射能汚染の低い地域からの移入によるものであった。1986年と1987

KrivolutsKy論文のまとめ

- 土壌生物のβ線被曝はガンマ線被曝の27倍.
- 土壌表面の微生物には大きな影響があったが2年目にはほぼ回復。
- 事故直後には(残された)家畜に放射線火傷が認められたが数カ月で回復.
- 外見上の異常はなくとも、イヌやブタの臓器には病理的 変化.(ネズミ類のような小動物には変化なし.)
- 鳥類の臓器には、2年目に病理的変化.
- 5年後には、外見上、病理上の異常はなくなったが、野 ネズミの血液像には異常が残っている.

エーリュブノ	1.201	岡の動物と自新にも	いけてに田亦化	のちた		
テエルノノイ・) の 観	TT 圏の動物と局類にの R(D+15)、mR/h	の初珪支化	リオエ	組織	
調査対象	察数	事故から 15 日後の 土壌表面線量率	吸収線量 rad	肝臓	腎臓	脾臓
		1986年				
<哺乳類>						
草食動物 (ヌートリア、リス、ネ ズミ類)	16	$15 \sim 60$	$150 \sim 160$	_	—	—
雑食 (ブタ)	5	$30 \sim 40$	$300 \sim 400$	+	+	+
肉食 (イヌ)	11	$15 \sim 240$	$150 \sim 2500$	+	+	+
鳥類(14種)	51	$15 \sim 60$	$150 \sim 600$		_	_
		1987年				
<哺乳類>						
草食動物(リス、ネズミ類)	26	$10 \sim 60$	$100 \sim 600$	_		_
肉食 (イヌ)	2	30~80	$500 \sim 1200$	+	+	+
<鳥類>						
水鳥(ガチョウ、カモ)	9	$30 \sim 80$	$200 \sim 560$	+	_	
水辺の鳥(サギ)	2	30~80	400~600	+	_	+
定住の鳥(ハト、カラス)	15	30~80	$350 \sim 600$	+	_	_
渡り鳥 (ミヤマカラス、モズ、セ キレイ、アトリ、ウグイス)	14	30~80	$200 \sim 560$		_	_

D.A. Krivolutsky 編"Bioindication of Radioactive Contamination" ロシア科学 アカデミー・生態学進化問題研究所、NAUKA、Moscow 1999 pp106-122.

チェルノブイリ原発周辺での事故後初期段階(1986-1988 年)における 放射能汚染の動物相への影響

D.A. Krivolutsky, V. Z. Martyushov, I.A. Ryabtsev

本報告の研究は、1986年7月から1988年末にかけて、ソ連科学アカデミー・A.N.Severtsov記念 動物生態学・形態進化学研究所(モスクワ)、ならびに高名な放射能生態学者 E.A.Fyodorov に率いら れた科学研究コンビナート"マヤク"のメンバーによって行われたものである。Fyodorov は、チェ ルノブイリ事故処理政府委員会のメンバーとして、事故から3日後の1986年4月28日からチェル ノブイリ原発で仕事を開始した。彼は、1986年9月に急性放射線障害の兆候で入院し、1987年春に 死亡した。

この論文は、すばらしい研究者であり人間であった彼に捧げられるものである。その内容は、動物 界に対するチェルノブイリ事故の最初の時期の観察であり、事故影響を調査している全ての人にとっ て興味深いものである。本報告で述べられている観察のうち、すでに公表されているのは、土壌生物 相の変化(Krivolutsky etal 1988、1990; Krivolutsky 1994)だけであり、地表の脊椎動物に関する 調査結果は、研究者にも非公開であったが、1991年になって公開された。また、これらのデータは、 1986年から1987年にかけて、チェルノブイリ事故による生態影響についてソ連政府が国際機関に報 告する資料を作成する際の基礎となった。

環境の被曝評価

放射線の影響を明らかにするためには、サンプル採取時の放射線環境だけでなく、事故が発生した ときからの変化や土壌の深さにともなう分布を考慮した吸収線量の知見が必要である。

そのため 30km 圏において、1986 年 5 月と、1986 年と 1987 年の 7 月-8 月に、さまざまな汚染レ ベルで、生態学的に典型的な地域について、熱蛍光線量計(Prister、Shein、1979、1980)とベー タ・ガンマ線量計 KRB-G-1、RUP-1 を用いた詳細な放射線量測定が実施された。この作業によって、 地表面のガンマ線量の推移、生体に対する総線量へのベータ線とガンマ線の相対的寄与、土壌深さに ともなう変化についての推定が可能となった。それらのフィールド調査は、G.N Shein と本論文の著 者らによって実施された。

地表面におけるガンマ線量の変化は、次の式によってうまく記述される。

$$R(t) = 7.5R_{D+15}t^{-0.75}e^{-3.51\cdot 10^{-3}t}$$

ここで、 R(t)-事故後の時間 t における地表面でのガンマ線量、mR/h、
R_{D+15}-事故から 15 日後における地表面ガンマ線量、mR/h、
t -事故後の経過時間、日.

この式の第1項 7.5・R_{D+15}・t^{-0.75}は、放射性核種混合物の物理的減衰を表し、第2項 e^{-3.51·10·3t} は地面への放射性核種の沈降の効果を表している。

よく知られているように、生物への放射線被曝影響の程度は、吸収線量の大きさのみならず、被曝の時間的経過にも依存する。それゆえ、地表面での被曝量集積の時間的プロセスを評価することが重要である。外部被曝は事故後の初期が強力で、観察された被曝影響は基本的に(事故後最初の1年間の被曝の70-75%をもたらした)1カ月半から2カ月間の間の被曝で形作られた。

地表面での総吸収線量に対するベータ線とガンマ線の寄与の比は、1986 年夏にフッ化リチウム熱 蛍光線量計を用いてみつもったところ、30km 圏内の平均で 27 対 1 となった。つまり、総被曝量の 96%はベータ線によるものであった。このように、被曝をもたらす基本的要素はベータ線であった。 地表から高さや地面の深さが大きくなるに従い、ベータ線は空気や土壌で弱くなるので相対的寄与は 小さくなるものの、被曝影響をもたらす基本的要因はベータ線であった。もちろん土壌中のある深さ では、ガンマ線被曝はベータ線より大きくなるが、そこでの被曝量の大きさは小さくなり、生物への 影響をもたらすほどではなくなる。例外のひとつは、とりわけ汚染が大きかった"赤い森"であった。 そこでは、土壌表面と落葉層でのベータ線は非常に強くすべての生き物が死滅した。その場所で土壌 深部に住んでいる生物の被害状況を調べるための調査は、1986年には、ガンマ線量が人にとっても 危険だったため実施不可能だった。

場所、時間	ガンマ線、mR/h	ベータ線、 cm ⁻² ・min ⁻¹	総吸収線量、R
松林、落葉層、 原発から3km、86/7/18	49.7		2940
松林、30km 圏の境界 86/7/18	6.1		916
耕作地、コパチ村 原発から 3km、86/9/23	8.0	1.0-5.0	8600

表1 土壌表面・落葉層の土壌生物サンプリング時の被曝量特性

30km 圏内のさまざまな地域で得られた多くの測定値を用いて、(30km 圏全体に適用できる)事故 後 15 日後 (D+15) における地表面でのガンマ線量率と吸収線量とを規格化して関係づけることが可 能となった。すなわち、D+15 における地表面での 1mR/h のガンマ線量率は、事故後 1 カ月間の 60±28 ラド、事故後 1 年間の 70±33 ラドの吸収線量に対応する(表 1)。

こうした線量情報は、1986-1987年の任意の時期に測定された空間ガンマ線量を用いて、土壌表面 層でのベータ線とガンマ線による総吸収線量を見積もることを可能にした・

土壌動物相への汚染の影響

チェルノブイリ原発事故は、土壌中に生息する生物への被曝の危険性という観点からは、4月26 日という傷つきやすい時期に発生した。つまり、無脊椎動物にとって、冬眠と春の土壌温暖の後の脱 皮と繁殖の時期であった。本論文の著者らによって、土壌中生物に関する放射能エコロジー的な研究 方法と原則はすでに開発されており(Krivolutsky、1983)、それらが応用された。

土壌中ミクロ動物相サンプルは、IEMEZh(ソ連科学アカデミー・動物生態学形態進化学研究所) が開発した方法にしたがって、面積 225 平方 cm で深さ 3cm の表面土壌を、10 回採取した。こうし たサンプルは、ミクロ動物相としては非常に大きく(通常は3~5cm²で大きくても 25cm²)、小生物 による土壌や落葉層中の塩分量のミクロ動物相での小さな変動を避けることができる。(!!!なんだか、 意味不明!!!)

この際には、メゾ動物相には特段の関心を寄せてはいないが、ミクロ動物相サンプルには、成長途 中のメゾ動物相が少なからず含まれている。通常、こうした段階を他の方法で計数してはならない (????)。得られたサンプルは、電熱器により、通常の方法で3日間乾燥させた。調査されたサ ンプルからの動物の追い出しは、同時並行で実施された。

調査結果は一様に、チェルノブイリ原発から3-7kmの範囲において、森の落葉層に生息する土 壌生物が放射能汚染により強く影響されていたことを示した。ダニ類やメゾ動物相の生育途中の数量 は、(1986 年7月半ばにおいて)30 分の1に減っていた。より穏やかな減少(2~3分の1)は、 耕作土壌のメゾ動物相で観察されたが、土壌5~20cm に生息する動物相には破局的な減少は認めら れなかった。放射能汚染は、さまざまな土壌生息動物の正常な繁殖を妨げた。チェルノブイリのミク ロ動物相では、松林の土壌相で幼虫や若虫がいなくなった。耕作土壌では、そのような死滅は観察さ れなかったが、ミミズの数が非汚染地区に比べ4分の1だった。

事故から1年後の1987年4月、土壌生物相は、最も強い影響を受けた地域でも大きく復活した。 ミミズの数は対照地域の約15%だったが、卵の存在は、最大の汚染地域における生物の繁殖を示し ていた。コパチ村では、無脊椎動物の数は対照地域の45%で、メゾ動物相の多くは昆虫の幼虫で、 つまり外から成虫が飛んできて汚染地域に転住したものだった。事故の2年半後には、メゾ動物相は 実質的に完全に回復した。性的未成熟(30%)と性的成熟(10%)の相対的割合は、対照地域と調査 した汚染地域では違いがなかった。従って、0.9~1.4mR/h という残留放射線レベルは、土壌動物の 復活において悪影響をもたらしていなかったと結論できよう。動物相の種類の違いは保たれていた。 つまり、汚染地域の森のミミズは Dendrobaena octaedra のみで、対照地域にはさらに Eisenia nordenskioldi が認められた。土壌のミクロ動物相については、我々のデータでは、もっと早く1988 年春には復活した。

事故後最初の3年間の観察から以下のように結論できる。

- 1. チェルノブイリ原発事故が周辺近傍地域にもたらした放射能汚染は、土壌生物相、とりわけ森の 落葉層と表層の棲息生物へ実質的な影響をもたらした。
- 2. 約3krad という総被曝量は、土壌無脊椎動物を直接に死滅させるほどではなかった。その被曝 量は、この種の生物の 50 日半致死線量の 3~30%であった。
- そのような放射線量は、ほとんどすべての無脊椎動物の卵や発生初期段階での死滅をもたらすには十分であり、放射能汚染の結果として観察された負の影響は、集団の繁殖や再生産過程への障害と関係づけられるものであった。ミクロ動物相の短い生涯(通常1~12カ月)、定常的な世代交代、 多くの種の個体の成長の間に、電離放射線は、集団の再生能力を破壊することによって影響をもたらした。そのような放射線量も、これまで知られていなかった、動物の死滅線量と呼べるであろう。
- 4. 耕作土壌では、深いところの生物は、土壌上層により放射線の作用が遮蔽された。いずれの動物 においても破滅的な死亡は観察されなかった。
- 5. 事故の1年後、森の動物相の量は、残留個体(対照の 15%)と外部からの昆虫の転住によって 徐々に回復し、幼虫の数は対照地域とほぼ同じになった。
- 6. 事故から 2~2.5 年後には、原発から 3km 以上離れたところでは、土壌動物相はほぼ完全に回復した。
- 7.1987年から1993年にかけての土壌生物の多様性は、抑制された状態で、対照に比べ、記録され た種の数は約50%だった。1995年にようやく、この指標に関しても生態系が回復した。

野生ならびに家畜の脊椎動物に対する影響

30km ゾーンを動物地理学的に分類すると、ヨーロッパに典型的な地表の脊椎動物相で特徴付けられる、ポレーシェ森林地域である。

1986 年 8 月-9月、放射能汚染を蒙った地域に生息している動物の調査が行われた。主な調査地 域は、レレフ村、コパチ村、チスタガロフカ村、チェルノブイリ市、それにチェルノブイリ原発冷却 池だった。哺乳類と鳥類の種類、分布、挙動が調査された。動物を捕殺し、さまざまな臓器の放射能 濃度、病理学的変化の観察、血液像が調べられた。

(チェルノブイリ原発から半径 10km 圏の) 1986 年 8 月 1 日までの動物の外部被曝吸収線量は 0.3krad で、内部被曝は 4krad だった。

脊椎動物相の中心は鳥類で、50 種類以上の鳥が確認された。稀な種類として保護されている、大 小の白サギ、白尾ワシ、灰色ツルにも出会った。鳥の一部は汚染地域に巣を作っていた。野生ならび に家のスズメ、ムクドリ、カササギ、カラス、ミヤマガラス、イエツバメ、ヨシキリの孵化が認めら れた。調査期間中に、野生の鳥の死骸には出会わなかった。

鳥の挙動には、外観からは異常は認められなかった。一部の鳥は、巣立ち後に渡りをし、汚染地域 の生息期間は限られていた。8月末に渡り鳥として確認されたのは、ウグイス、ホオジロ、アトリ、 セキレイ、オオタカ、チュハヤブサだった。

30km 圏に残っていた家鳥は、ガチョウ、カモ、ニワトリだった。ガチョウとカモの栄養状態は良かったが、ニワトリは水準以下だった。ニワトリの新鮮な卵や若鳥は認められなかった。事故後はじめの2カ月間は、卵やひなの孵化が認められていた。

30km 圏の哺乳類としては、ハリネズミ、リス、野ネズミ、イエネズミ、黄ノドネズミ、ふつうの ハタネズミ、ふつうのトガリネズミ、小型トガリネズミの8種類が観察された。

最も大きな汚染地域に残されていた家畜には、事故から最初の数カ月間、鼻の潰瘍、四肢や腹部の 脱毛といったⅠ度とⅡ度の火傷が認められた。3、4カ月後には傷は回復した。8月-9月に我々が 調査したときには、ブタ、ネコ、イヌに放射線火傷は認められなかった。

チェルノブイリ 30km 圏の野生哺乳類の動物相は、十分に多様で、6 科目 45 種類の哺乳類が生息 していた。

動物の生活圏分布は一様ではなく、動物が多いのは自然の生活圏であった。森には、ハリネズミ、 リス、アライグマ、テン、アナグマ、シカ、オオジカ、モグラ、ネズミ類がいた。草地や沼沢地には、 ビーバー、マスクラット、ミズネズミ、カワウソ、マムシ、アオダイショウ、イモリ、ヒキガエル、 カエル、カメがいた。しかし、これらの動物の数は多くはなかった。

畑のように人間の手が入った生活圏では、主にハタリス類とネズミ類が観察された。集落の中では 家ネズミと灰色ネズミだった。森では、まれにオオカミ、キツネ、ウサギに出会った。

調査期間中、野生の哺乳動物の行動に外見上の異常は観察されず、通常の典型的な野生動物相であった。

1986 に観察された動物の病理変化

30km 圏で捕獲したすべての鳥と哺乳類は解剖して、変化がないか臓器や組織を観察した。

冷却池周辺のレレフ村、コパチ村、チスタガロフカ村で捕獲したイヌの内臓や組織には、慢性放射 線病を特徴付けるさまざまな変化が認められた。筋肉や脂肪組織の萎縮が見られたが、皮膚、鼻やロ の粘膜、目の結膜に異常はなかった。全てのイヌの肝臓は肥大化し、断面は削れが多かった。肝臓の 実質はもろい成分で、押すと容易にくずれた。

チスタガロフカ村と冷却池近くで捕獲した3匹のイヌでは、肝臓と脾臓に、暗サクラ色で大きさソ ラマメ大の充血した斑点があり、臓器の表面に隆起した溢血が認められた。

イヌの腎臓は、肥大せず、皮膜は容易に剥がれ、結合組織に脂肪はなく、皮質と実質に点々状の溢 血があり、層の間は不明確で溶解していた。(!!!今中には意味不明!!!) チスタガロフカの3匹と冷却池 近傍の2匹の腎臓の表面はざらざらしていて、(管と糸球管の萎縮、結合組織での貧弱な細胞の増加 が、表面をでこぼこにしながら腎臓を形作る)腎臓硬化症(?)の存在を示していた

泌尿器系の臓器には異常は認められなかった。脾臓は、すべてのイヌで約1.5倍に肥大化していた。 脾臓断面での髄の部分は暗赤色で溢血していた。

リンパ節は、10匹のうち4匹のイヌで、膜で仕切られたりして(?)溢血し肥大化していた。 甲状腺は、暗赤色だったが肥大化はなかった。 イヌの腸と胃には、明るい色の粘液が多量にあり、小腸の壁は厚くなっていたが、溢血、壊死、潰瘍その他の変異はなかった。ほとんど全ての動物の肺には、それほど大きくない漿液カタル性肺炎の病巣(?)が認められ、痛んだ場所では肺組織の色が赤くなり、切断面の表面からは濁った液体、気管支側からはねばった粘液が浸透していた。(???)

30km 圏ではその他に、ハリネズミ、リス、ヌートリア(洋ドブネズミ)の解剖と病理調査を実施 した。チェルノブイリ市で捕獲したヌートリアには、外見にも、解剖した臓器にも異常はなかった。 レレフ村付近で捕獲したリスやハリネズミにも臓器に異常はなかった。といっても、ヌートリア、ハ リネズミ、リスは、自然の植物、果物、草、キノコ、胡桃、菜園産物を森や村を自由に行き来して食 していた。

陸生鳥類に関する多くの調査では、組織の異常な例がいくつか観察された。レレフ村やコパチ村の ニワトリは、鶏舎や物置で暮らしていたが、巣に卵やヒナがいなかった。ニワトリの羽の表面に異常 はなかった。赤いトサカや首の垂れ皮も正常だった。ニワトリの解剖では、肝臓が赤茶けた色に変化 し、病弊していた。卵巣は、卵はなく萎縮していた。骨格の変化(胸骨突起の湾曲)は、自由な居住 にともなう、通常の世話と十分エサの不足によるビタミンとミネラル欠如の結果と考えられた。

水辺や水棲の鳥類(ガチョウ、カモ、カモメ、サギ)には、外観にも内部組織にも変化は認められ なかった。水棲鳥類の栄養状態は通常で、病弊はなく活発だった。

調査データを分析した結果、イヌとニワトリの臓器に、慢性的放射線障害に特有な症状が認められたと結論される。症状は、肝臓、リンパ節、腎臓の溢血、肝臓と脾臓の肥大、イヌの腎臓硬化症、ニワトリの卵巣萎縮であった。動物に観察されたそれらの変化は、外部被曝ならびに内部被曝の結果である。

鳥類と哺乳類の臓器における放射性核種の蓄積

放射性物質は、土壌-植物-草食動物-肉食動物という食物連鎖を通じて、地上脊椎動物の臓器に 入る。動物の臓器に蓄積されていた放射性物質量の調査結果を表2と表3に示す。

調査結果は、同じ地域に生息している動物の間で体内の放射性物質濃度に大きな違いがあり、また 同じ種類でも場所によって大きな違いがあることを示している。

たとえば、レレフ村や冷却池の岸で捕獲された動物の放射性物質濃度は、土壌の汚染レベルがより大 きなチスタガロフカ村で捕獲された動物より、大きかった。

穀類食のニワトリの筋肉の濃度は、哺乳類や水棲鳥類に比べてかなり低かったが、羽の汚染では反対の傾向があった。

陸上動物の羽や皮膚の汚染は、繰り返し水と接触している水鳥より大きかった。水の放射性物質濃 度は、土壌に比べてかなり低く、水鳥の体表面から放射性物質の一部が洗われていることを示してい る。つまり、動物の皮膚は主として機械的なメカニズムで汚染していると言える。

動物の臓器や組織に蓄積されている放射性物質は、基本的にセシウム 134 と 137 で、その濃度は 時折、土壌中濃度を越えていた。つまり、臓器への蓄積である。

	するチェルノブイリ帰 臓器、組織	原来 30kn 言言	ultas	勿臓器の、	单位汚染密 B103	度当りの B ⁿ¹⁰⁶	(射性物質)。 Ce13.4	書度、(pCi, Ce137	/kg) / ((Ci/km ²).
(生重量) 場几	E)	۲ L	0095 Nb95	Cr95	Ru103	Ru106	Cs134	Cs137	Ce141	Ce144
筋肉 羽 レレフ:	Ń	朴	18 411	25 6632	7694	0	3920 7360	3070 6316	33 1258	51 5105
筋肉 羽	Ē		1550	3057	4559	0	21600 4960	22134 4503	1076	3455
筋肉 羽	Ľ.		81 675	1075	414		28080 7120	9474 5760	397	1200
筋肉 羽	ĥ		145	283			11680 1520	11842 1579		
筋肉 <i>"</i>	ĥ		81 675	10472	414		28080 7120	25292 5760	397	1200
筋肉 毛皮 " 肝臓	6		1641	2396	1813	0	49760 16400 21600	49795 14210 20555	944	3300
(頭・内臓除 いた)胴体 "	ų		44	1	1	0	1920	1959	1	28
(頭・内臓除 いた)胴体	ų		382	584	207	0	6880	5438	50	150
筋肉 チスタガロフ 毛皮 カ村	ガロフ 村	~	8 161	3 491	15 458	35 1434	547 1069	567 1225	1 67.1	64
筋肉 羽	ĥ		327	261	180	336	202 242	102 223		27
筋肉 羽	ĥ		35	38	3 57	13 168	203 140	204 153	5	25
筋肉 チェルノブイ 毛皮 リ市	ノゴー	<u>,</u>	65 3420	4280	4210	3652	7333 8000	8596 6667	3137	261
筋肉 毛皮 冷却池近傍 肝臓	也近傍		47 6298 165	141 10707	7694	0 0	73520 20080 20080	64795 29240 22200	3129	1246
表3. 冷却池近辺の土壌とイヌの筋肉中のセシウム 137 濃度 (pCi/kg 生重量).

調査対象	^{137}Cs	調査対象	^{137}Cs
イヌ No.1	19.7	No.5	21.9
No.2	43.2	No.6	22.2
No.3	11.3	土壌	8.6
No.4	15.1		

セシウム 134 と 137 は代謝プロセスにより、濃度は 60 日後には平衡状態になる。

レレフ村冷却池付近で得られた調査結果では、イヌの筋肉のセシウム 137 濃度は 22pCi/kg [!!!単 位が何だか変、μのマチガイだろう!!!] まで蓄積されていた(表3)。

イヌの筋肉のセシウム 137 濃度は、他の動物に比べて最も大きく、モデル実験で得られた他の研究 結果とも一致した。

生活スタイルが違っても鳥類のセシウム 137 濃度はだいたい同じだった。たとえば、冷却池付近の カラス、家のガチョウ、野生のカモの筋肉中セシウム 137 濃度は、生重量でそれぞれ 0.76、0.56。

0.86 μCi/kg だった。ただ、青サギの筋肉中濃度は半分だった。というのは、サギのエサである小魚 やカエルのセシウム 137 濃度が低かったからである。

表4に、土壌中から動物筋肉への移行係数の数値をいくつか示した。

小動物をエサにしているイヌの筋肉にはセシウムの濃縮が認められた。

さまざまな村では、沈着した放射性粒子の性質や分布の違いにより蓄積度の違いがあった。

表4 チェルノブイリ周辺汚染地域の動物の筋肉といくつかの植物に対する土壌からの移行係数

調査対象	セシウム 137 移行係数				
レレフ村					
ニワトリ	0.12				
家のガチョウ	1.0				
野生のカモ	0.3				
イヌ	2.0				
チェルノブイリ市					
ヌートリア	0.3				
草(青い部分)	0.5				
トウモロコシの穂	0.2				

1987年(事故後2年目の)動物の状態

1987年8月1日での調査地域の哺乳類に対する外部被曝は最大約400radで内部被曝は約5000rad だった。1987年8月1日における動物の吸収線量の(1年間の)増加は、1986年8月1日の線量の 10~20%であった。

主要な脊椎動物は鳥類で、50種類以上が観察された。1986年の観察では、動物や鳥類の種類においては、事故以前との比較で変化は認められなかった。1987年、チェルノブイリ原発 30km ゾーンでは、"赤い森"を含め、齧歯類の増加が認められた。

動物数の増加について、言及されている要因のひとつは、畑で収穫されなかった穀物や菜園の存在 である。そこでは、灌漑作業の停止とともに、水に充たされた空間ができあがり、水辺に巣を作る鳥 (カモ、サギ、カモメ)が増加した。

"赤い森"と放棄された庭では1987年に、ゲッ歯類の定住が観察された。赤い森においてワナで捕獲したゲッ歯類(ワナの効率は約40%)の臓器には外見上の異常は認められなかった。

1987 年の観察では、放射能汚染レベルの大きな枯れた松林と近傍において、いくつかの種類の鳥 類が巣作りと子育てを続けていた。高い放射線レベルが、この地域から鳥類を遠ざけるようなことは なかった。

1987年の夏、30km 圏では、昆虫、穀類食や昆虫食ならびに肉食の鳥類が増加した。チョウの害敵 であるマツキボシゾウムシの2年目における増加は、ウラル東部放射能汚染事故で2-3年後にネパ ールカイコガが増加したことに似ていた。

1987年の哺乳類と鳥類の臓器における病理変化

1987年8月、チスタガロフカ村、レレフ村、コパチ村、チェルノブイリ市ならびに冷却池付近 において、野生ならびに家畜動物の病理調査を実施した。全部で33種類、120体の動物を調査した。 動物の病理調査結果を表5に示す。

表5のデータから、動物組織における外見からの病理変化の存在を判断できる。生活形態、エサの 種類、被曝量によって病理変化が決まっている。つまり、1986年と1987年の草食小動物には病理変 化は認められなかったが、ブタやイヌの解剖では以下のような病理変化が認められた。肝臓は約 1.5 倍に肥大化してその表面には多数の斑点状や縞状に溢血があった。脾臓も肥大化し表面には点状の溢 血があった。

肺には漿液カタル性肺炎の病巣が認められた。腎臓の皮質には、点状の溢血をもつ層間がはっきり しない層があり、調査したイヌには腎臓硬化症のケース(40%)があった。

1987年の調査では、いくつかの鳥類においても臓器の変化が認められたことに注意頂きたい。肝 臓と脾臓が肥大して変色し、溢血も認められた・

	観	R(D+15)、mR/h	四口約号	組織					
調査対象		事故から15日後の	rad	肝臓	腎臓	腹臓			
		土壤表面線量率	144	74 1 74/72 5	1 3 /00/23	74 1 7407 5			
		1986年							
<哺乳類>									
草食動物(ヌートリア、リス、	16	$15 \sim 60$	$150 \sim 160$	_	_	_			
ネズミ類)									
雑食(ブタ)	5	$30 \sim 40$	$300 \sim 400 +$		+	+			
肉食 (イヌ)	11	$15 \sim 240$	$150 \sim 2500$	+	+	+			
鳥類(14種)	51	$15 \sim 60$	$150 \sim 600$	_	—	—			
		1987年							
<哺乳類>									
草食動物(リス、ネズミ類)	26	$10 \sim 60$	$100 \sim 600$	—	_	_			
肉食 (イヌ)	2	$30 \sim 80$	$500 \sim 1200$	+	+	+			
<鳥類>									
水鳥 (ガチョウ、カモ)	9	$30 \sim 80$	$200 \sim 560$	+	—	—			
水辺の鳥(サギ)	2	$30 \sim 80$	$400 \sim 600$	+	—	+			
定住の鳥(ハト、カラス)	15	$30 \sim 80$	$350 \sim 600$	+	—	—			
渡り鳥(ミヤマカラス、モズ、	14	20 - 20	200 - 560	_	_				
セキレイ、アトリ、ウグイス)		30,~90	200~~060						
注 "+"・亦化右り "-"・亦化わし									

表5. チェルノブイリ 30km 圏の動物と鳥類における病理変化の存在

壮. +;変化有り、 ;変化なし 調査された動物の体内臓器に観察されたさまざまな影響は、まず第1に、外部および内部被曝量に 依存する。被曝量の形成には、汚染地域における動物の基本的な生活場所の役割が大きい。たとえば、 ネズミ類は基本的に同じ場所に生活し、鳥類はかなりの距離を移動する。ブタやイヌは汚染土壌とつ ねに接触し、エサを得る過程で土壌を飲み込んで内部被曝を受ける。調査動物の放射線に対する感受 性もさまざまである。ブタはイヌに比べて放射線感受性が大きく、鳥類は、イヌやブタに比べて放射 線に強い。

我々の考えでは、こうした原因が、被曝影響の現れ方を左右している。体内臓器に観察される変化 は慢性的放射線病である。時間の経過とともに放射線量率は減少しているが、1986-1987年に観察さ れた動物の病理的変化は、さらに 2-3 年続くと思われる。しかし、動物の大量死に至ることはないだ ろう。

さまざまな動物群集における放射性物質の蓄積と移行

チェルノブイリ 30km 圏やベラルーシ・モギリョフ州に棲息している動物における、セシウム 137、 ストロンチウム 90、プルトニウム、キュリウム、アメリシウムといった放射性物質の臓器への蓄積 は、以下のような要因に左右される。

-土壌の汚染密度、ならびに動物の土壌への接触の仕方と時間

-その動物種のエサの状況と生活場所の環境

- 放射性物質の生物による利用され易さ(土壌中での形態)

1986-1987 年に調査した動物群集における土壌の放射性物質汚染密度は、セシウム 137 で 13~20 倍の違いがあった。

土壌のセシウム 137 汚染レベルが 20~450Ci/平方 km のチェルノブイリ原発 5km ゾーンに長期間 (5~16 カ月)残されていた家畜の動物や鳥は、常に移動しながらエサを得ており、筋肉中のセシウ ム 137 濃度は最大で、ブタ 0.6µCi/kg (=22kBq/kg)、イヌ 13.4 (500kBq/kg)、ガチョウ 9.5 (350kBq/kg)、ニワトリ 0.7 (26kBq/kg) だった。セシウム 137 土壌汚染が 450Ci/平方 km の冷却 池近くに棲んでいるイヌとガチョウのセシウム 137 濃度は、レレフ村、コパチ村、チスタガロフカ村

に棲んでいるものに比べて 15~20 倍であった。それらの村のセシウム 137 土壌濃度は 20~35Ci/平 方 km で、冷却池近くに比べ 13~20 分の 1 だった。

5km 圏に棲息している野生の定住性鳥類 (カラス、スズメ、ハト)の筋肉中セシウム 137 濃度は、 0.23~3.8µCi/kg (8.5~1400 kBq/kg)の間だった。

5~7カ月という一定期間だけ汚染地域に棲息する渡り鳥(カモメ、ノガモ、サギ、バフンダカ) の筋肉中セシウム 137 濃度は 0.1~3.7µCi/kg(3.7~140 kBq/kg)だった。違う種類の鳥類のセシウ ム 137 濃度の類似性は次のことを示している。

チェルノブイリ原発 5km 圏内における渡り鳥の5~7カ月間の生活やヒナ鳥の1~3カ月間の成長の間に、放射性物質摂取にともなう体内のセシウム 137 濃度レベルは動的平衡に徹している。

チェルノブイリ原発5km圏の鳥類や哺乳類の放射性物質の体内摂取においては、食餌の際の土壌 粒子の取り込みがかなり寄与している。胃や餌袋の内容物のセシウム137濃度がエサそのものより2 ~3倍大きいことが、そのことを示している。土壌粒子として摂取されるセシウム137の寄与は、エ サよりも2倍以上多いであろう。

チェルノブイリ原発5km圏内の動物の骨格中のストロンチウム90濃度は、イヌで1.5µCi/kg(56kBq/kg)、ニワトリで0.6µCi/kg(22kBq/kg)、ガチョウで2µCi/kg(74kBq/kg)で、筋肉中の放射性セシウムとだいたい同じレベルであった。

事故後はじめの数カ月間は、放射性物質の主な摂取経路は吸入であった。1986年9月、5km圏の

イヌの肺中のストロンチウム濃度は、骨格中の3.5倍で、肺中のプルトニウム濃度は他の臓器や組織の2~3倍だった。これらのことは、事故後最初の年には吸入の寄与が大きかったことを示している。

チェルノブイリ 30km 圏とモギリョフ州において、土壌の汚染レベルとさまざまな種類の動物の臓 器中放射性物質濃度との相関性を定量的に調べるため、動物の種類を以下の4つに分類して、臓器へ の移行係数(Kn)を求めた。1)土壌中の有機物、落葉、落枝を栄養にしている動物(土壌中メゾ 動物相)、2)植物を食べる動物(植物食の昆虫、穀物食の鳥、草食の哺乳類)、3)昆虫食の動物(昆 虫食の鳥と哺乳類)、4)肉食(哺乳類とは虫類)。

さまざまな食物連鎖におけるストロンチウム 90 とセシウム 137 の蓄積に関する法則性の分析結果 (図1-図3)は、食物連鎖の前段階に比べ、植物や無脊椎動物を食べている動物の骨格でのストロ ンチウム 90 の蓄積傾向と、同じ動物の筋肉中セシウム 137 の減少傾向を示している。その例外は、 草食のカモとガチョウで、それらの筋肉中セシウム 137 の移行係数(Kn=1.4~1.7)は、肉食哺乳 類や鳥類(Kn=2)に比べ若干小さいが、このことは文献データと一致している。

肉食の哺乳類と鳥類の体内では、ストロンチウム 90 とセシウム 137 の濃縮が観察され、さまざま な肉食動物についての法則性として知られているものである。

放射性物質の動物体内への取り込まれ易さを調査するため、チェルノブイリ原発から、2km、5km、270kmの地点で、野ネズミと草へのセシウム137の蓄積を調べた。2km地点での土壌からの移行係数は、草(Kn=0.06)、野ネズミ(Kn=0.2)ともに、5km(草でKn=0.2、野ネズミでKn=0.6)や270km(モギリョフ州ベプリン、草でKn=4.9、野ネズミでKn=0.6)の移行係数に比べて小さかった。これらのデータは、動物や植物への放射性セシウムの取り込まれ易さが、チェルノブイリ原発の距離とともに大きくなることを示している。この結果は、原子炉爆発にともなう地域汚染の調査結果と一致する。

30km 圏での超ウラン元素に関する食物連鎖にともなう移行の研究は、かなりの量のプルトニウム、 キュリウム、アメリシウム、土壌、植物、動物の臓器・組織に存在していることを示している。動物 群集での超ウラン元素の存在を基に食物連鎖中での移行を調べることができる。

結論として、30km 圏に棲息する全ての種類の哺乳類と鳥類において、放射性物質(ストロンチウム 90 とセシウム 137)の蓄積が認められた。

			野ネズミ	<u>0.6*</u> 1	<u>(0.7*)</u> (2.3)	ר דע ר דע	<u>11.9</u> 12.2	(2.0) (4.5)
	—— 草 1.7(0.3)	<u> </u>	ント	0.6	<u>(0.3*)</u> (1.1)	ーー カラス ·	<u>3.6</u> 3.7	<u>(6.5)</u> (15.1)
土壌 1	—— 落葉層 31.5(96.0)		ニワトリ	<u>1.7*</u> 1.3	<u>(-)</u> (-)	カモメ ·	<u>0.4*</u> 0.3	<u>(0.9*)</u> (1.0)
	キノコ 0.6(0.3)	<u> </u>	野ガモ	<u>2.5*</u> 2.9	<u>(1.7*)</u> (2.6)	サギ ·	<u>0.7*</u> 5.1	<u>(3.7*)</u> (2.6)
		<u> </u>	ガチョウ	<u>21.1*</u> 30.2	<u>(1.4*)</u> (4.3)	昆虫食の鳥·	<u>0.4</u> 2	(0.7) (0.8)
			昆虫	<u>0.5</u> 0.5	<u>(2.0)</u> (1.0)	ブタ ·	<u>0.6</u> 1.3	
						/ バフンダカ・		<u>(0.8*)</u> (13.3)

図1. チェルノブイリ 30km 圏における生態系での 1986-1987 年のセシウム 137 移行係数(分子: 食物連鎖前段階からの移行係数. 分母: 土壌と比較したときの移行係数. *印は、胃の移行係数.) () 内の値は 1987 年.

251

土壌 1
 草 1.1(0.1)
 野ガモ
$$\frac{6.0*}{1.1} \frac{(-)}{(1.4)}$$
 カラス $\frac{-}{0.6} \frac{(22.0)}{(2.7)}$

 土壌 1
 「キビ、ヒマワリ)種
0.03(-)
 ガチョウ $\frac{1.1*}{0.8} \frac{(-)}{(1.4)}$
 サギ $\frac{-}{-} \frac{(0.3)}{(0.02)}$

 キノコ -(0.4)
 「ハト $\frac{-}{-} \frac{(17.2*)}{(1.7)}$
 ハト $\frac{-}{-} \frac{(17.2*)}{(1.7)}$

図2. チェルノブイリ 30km 圏の生態系におおて 986-1987 年に観察されたストロンチウム 90 の移行係数

図3. ベラルーシ・モギリョフ州ベプリンの生態系において 1987 年の観察されたセシウム 137 の 移行係数.

動物臓器のセシウム 137 濃度の変化は、土壌中の放射性物質濃度に依存している。

脊椎動物が上位に位置する食物連鎖において、ストロンチウム 90 はいずれの段階でも骨格に蓄積 され、このことは従来から確認されている結果と一致した。

さまざまな食物連鎖においてセシウム 137 の蓄積もさまざまだった。セシウム 137 は、草食や無 脊椎動物を食べている動物や鳥類の大部分では蓄積されなかった(Kn=1)が、水棲で草食の鳥類 (カモやガチョウ)や肉食哺乳類では蓄積があった。

動物臓器への生物学的影響は、哺乳類に対しては 1986 年~1987 年に、鳥類に対しては 1987 年~ 1988 年に観察された。1988 年には動物における外観的な変化はなくなった。しかしながら、哺乳類 における遺伝的また血液学的変化は事故から5年後も観察された。

チェルノブイリ原発周辺の植物に関しては、最大の放射線影響は 1987 年に認められた。放射線量 が 10mR/h 以上の4平方kmの地域において、マツの枯死、広葉樹、灌木、草本の上部の障害が現れ、 草本が死滅した後に、シラカバ、匍匐植物、青モリニアといった植物が増加し、草の量は 2~2.5 倍 になった。10mR/h 以下では、植物への放射線影響は観察されなかった。

1989年には、植物の形態変化はほとんど消滅し、(エリカ属、匍匐植物、青モリニアといった)草 の増加は終了したが、以前のような種への復活は認められなかった。変化は 1990年にも残っていた。

野獣と鳥類の種類については 1988 年の観察では、事故以前と変化はなかった。1988 年に 30km 圏 で捕獲した結果では、1987 年に比べ、野ネズミの数は 3~4 分の1 に減少していた。この減少は、以前に農業が行われていた地域に関係し、もともと自然状態のところでの減少は少なかった。

1988年の観察では、枯死した松林やその周辺の高レベル汚染地域で、いくつかの鳥類が巣を作り

エサを得ていた。1986年や1987年と同じく、この地域において、高いレベルの放射線が鳥類を寄せ 付けなくなるようなことは認められなかった。

1988年夏の30km圏では、1987年と同じくらい多くの昆虫と穀物食や昆虫食の鳥類が認められた。 マツ林では、放射能汚染地域でのネパールカイコの増加に似たような、マツキボシゾウムシに増加が 認められた。

1988年の夏、捕獲した小動物を解剖し臓器や組織を観察した。1988の小型脊椎動物には臓器の病 理変化は観察されなかった。注目しておきたいのは、1986年から1988年にかけて400~600mR/h というレベルの"赤い森"に生息していたカヤネズミや野ネズミの臓器において病理的な異常がなか ったことである。このことは、栄養状態が良い野ネズミ集団の場合、放射線レベル上昇が影響をもた らさなかったことを示している。

1991 年、事故から5年後のチェルノブイリ 30km の汚染地域において、野ネズミの著しい増加が 認められた。このことは、放射線の有害作用に対する修復や適応を表している。しかしながら、これ らのメカニズムは、外部被曝と内部被曝をあわせて年間 50~120rad という慢性的被曝下で調査され た大部分の野ネズミにおいて、慢性的放射線病の発現を防止できておらず、なかでも造血系において 慢性放射線病が明らかだった。

チェルノブイリ 30km 圏の野ネズミの 80~95%に血液像の部分的な異常が認められ、白血球の 減少は、病理的変化を示した野ネズミの 70%に認められた。こうした血液像全体の異常は、環境中 の害的要因に対する動物の抵抗性に影響するであろう。

注目したいのは、変化の度合いで、白血球の変化は40~60%に認められ、そのうち10~20%は骨髄での好中球減少を主体とする重度の白血球減少症で、リンパ球減少と合併している例もあった。 血液像の変化は、白血球の再生だけでなく、骨髄での赤血球や血小板にも認められている。放射線症 として観察された血液像の病理は、赤血球における小核増加と言った種類の血液における遺伝学的変 化を伴っている。野ネズミの血液系に変化が観察されるものの、原則として、いかなる形態的変化も 認められていない。

事故後5年のチェルノブイリ30km圏の野ネズミの血液像に変化はあるものの、観察した野ネズミの50%以上が成熟前の若い野ネズミであったことは、血液像変化が生殖機能を障害していないことを示している。

(2016.7.20 いまなか訳)

ЛИТЕРАТУРА

Криволуцкий Д.А. Радиоэкология сообществ наземных животных. М.: Энергоатомиздат, 1983. 86 с.

Криволуцкий Д.А. Почвенная фауна в экологическом контроле. М.: Наука, 1994. 269 с.

Криволуцкий Д.А., Покаржевский А.Д., Усачев В.Л. и др. Влияние радиоактивного загрязнения среды на почвенную фауну в районе Чернобыльской АЭС // Экология. 1990. № 6. С. 32-42.

Криволуцкий Д.А., Тихомиров Ф.А., Федоров Е.А. и др. Действие ионизирующей радиации на биогеоценоз. М.: Наука, 1988. 240 с.

Пристер Б.С., Шейн Г.П. Метод измерения поглощенных доз в объектах внешней среды термолюминесцентными дозиметрами // Тр. Ин-та прикладной геофизики, 1979. Вып. 38. С. 130–135.

Пристер Б.С., Шейн Г.П. Блок для измерения высвечивания термолюминесцентных дозиметров // ПТЭ. 1980. № 6. С. 35-36. 福島第一原発事故による周辺生物への影響に関する研究会

2016年8月3日(水)、4日(木) 京都大学原子炉実験所事務棟大会議室

プログラム

<報告20分、質疑5分>

◆ 8月3日(水)

13:30~15:10 座長 鈴木 譲

- 1. 福本 学(東京医科大学)
 - 低線量放射線の生物影響研究と被災動物線量評価事業
- 2. 渡辺 嘉人(放射線医学総合研究所)

福島第一原発周辺におけるモミの形態変化の調査

3. 堀口 敏宏(国立環境研究所)

東日本大震災及び福島原発事故後の東日本沿岸における潮間帯生物の 種数と棲息密度

4. 児玉 圭太 (国立環境研究所))

東日本大震災・原発事故後の福島県沿岸域における底棲魚介類の群集 構造

<休憩 15:10-15:25>

15:25~16:50 座長 齊藤 剛

5. 三浦 富智(弘前大学大学院保健学研究科)

福島県浪江町に生息するアカネズミにおける放射線生物影響研究

6. 大沼 学(国立環境研究所)

EGS5 を使用したアカネズミの被ばく量推定について

7. 大平 拓也 (新潟大学農学部)

被災アカネズミにおける精巣の EPMA 分析

8. 山田 文雄(森林総合研究所)(コメント発表 10 分間)

森林における小型哺乳類(ノネズミ類および食虫類)の放射性セシウム

<休憩 16:50-17:05>

- 17:05~18:20 座長 福本 学
- 9. 漆原 佑介(放射線医学総合研究所)

福島県内野生ニホンザルへの被ばく影響評価

10. 鈴木 譲 (元東京大学水産実験所)

放射能汚染地域に生息するコイの健康調査 2013-2015

11. Randeep Rakwal (筑波大学体育系)

Transcriptomic, proteomic and metabolomic profiling of low-level gamma irradiated rice at Iitate village, Fukushima

◆ 8月4日(木)

9:30~10:45 座長 秋元信一

- 12. 秋元 信一(北海道大学農学研究院)
 - 福島の汚染土壌が昆虫の発生に与える影響
- 13. 阪内 香 (琉球大学大学院理工学研究科)

ヤマトシジミの外部照射実験-経過報告-

14. 平良 涉 (琉球大学大学院理工学研究科)

モンシロチョウにおける内部被曝実験

<休憩 10:45-11:00>

11:00~12:15 座長 夏堀雅宏

15. 平谷 佳代子(岩手大学農学部)

福島県の帰還困難区域内における黒毛和牛の病理

16. 夏堀 雅宏(北里大学獣医学部)

牛(黒毛和牛)における放射性セシウムの体内動態

17. 夏堀 雅宏(北里大学獣医学部)

福島県警戒区域内で継続飼育される黒毛和牛の被ばく状況

<昼休み 12:15- 13:30>

13:30~14:45 座長 鈴木正敏

18. 井上 一彦(鶴見大学探索歯学講座)

福島原発事故により放出された放射性核種(90Sr, 238Pu, 239+240Pu)の

ヒト乳歯への蓄積に関する研究 第1報

19. 鈴木 正敏 (東北大学加齢医学研究所)

生体測定による筋肉中放射性セシウムの体内動態推定の可能性

20. 林 剛平(東北大学加齢医学研究所)

東京電力福島第一原子力発電所事故の被災動物線量評価性

<休憩 14:45-15:00>

15:00~16:15 座長 今中哲二

21. 藤原 慶子(京都大学原子炉実験所)

テルルとセシウムの土壌から植物への移行係数と移行係数が線量評価に

及ぼす影響

22. 遠藤 暁 (広島大学大学院工学研究院)

福島第一原発事故由来土壌中 Cs ホットパーティクルの測定

23. 今中 哲二 (京都大学原子炉実験所)

チェルノブイリ事故による生物影響に関するロシア語文献の紹介

16:15~17:00 総合討論 座長 福本 学、今中哲二

- 世話人 福本 学 東京医科大学
 - 齊藤 剛 京都大学原子炉実験所

KUR REPORT OF KYOTO UNIVERSITY RESEARCH REACTOR INSTITUTE

発行所 京都大学原子炉実験所
発行日 平成 28 年 12 月
住所 大阪府泉南郡熊取町朝代西 2 丁目
TEL (072) 451-2300