ISSN 2189-7107 KURRI-EKR-22

平成 29 年度

「短寿命 RI を用いた核分光と核物性研究 IV」

Proceedings of the Specialists' Meeting on "Nuclear Spectroscopy and Condensed Matter Physics Using Short-Lived Nuclei IV"

平成 29 年 12 月 20 - 21 日 開催 (December, 20 - 21, 2017)

編集:小林義男、柴田理尋、大久保嘉高

Edited by : Y. Kobayashi, M. Shibata, and Y. Ohkubo

京都大学原子炉実験所 Research Reactor Institute, Kyoto University

はじめに

京都大学原子炉実験所の研究用原子炉は中性子を発生するための装置であるが、こ の中性子を原子核に照射することにより、中性子過剰の不安定な原子核を提供してくれ る装置でもある。これらの不安定な原子核は、安定な原子核とは異なる様相を示す。動 的な性質を示す原子核の多様な励起構造の研究は物理学の興味深いテーマの1 つであ る。また、原子核の静的な電磁気的性質を用い、超微細相互作用を介して、電子物性の 研究を行うことも重要なテーマである。これらの研究分野および関連する領域に関し、 「短寿命 RI を用いた核分光と核物性研究」という題目で、原子炉実験所専門研究会の 第4回目の会合が平成29年12月20日と21日の2日間にわたって開催された。そ

1) 核分光実験関連

の内容は、

- 2) 時間微分型摂動角相関法関連
- β 核磁気共鳴法関連
- 4) メスバウアー分光法関連
- 5) 核共鳴散乱法関連
- 6) ミューオン関連

などである。興味深い研究成果が報告され、それに対して熱心な討論が行われたことは 喜ばしいことである。この報告書がこの分野の一層の発展を促す一助となれば幸いであ る。

平成30年3月電気通信大学小林 義男名古屋大学アイソトープ総合センター柴田 理尋京都大学原子炉実験所大久保 嘉高

Preface

The research reactor at Research Reactor Institute, Kyoto University is a very useful neutron generator, providing us neutron-rich unstable nuclei by bombarding nuclei with those neutrons. The produced unstable nuclei exhibit aspects distinct from those of stable ones. Nuclear structure studies on a variety of excited states reflecting dynamic nuclear properties are one of fascinating research subjects of physics. On the other hand, some radioactive nuclei can be used as useful probes for understanding interesting properties of condensed matters through studies of hyperfine interactions of static nuclear electromagnetic moments with extranuclear fields. Concerning these two research fields and related areas, the 4th symposium under the title of "Nuclear Spectroscopy and Condensed Matter Physics Using Short-Lived Nuclei" was held at the Institute for two days on December 20 and 21 in 2017. We are pleased that many hot discussions were made. The talks were given on the followings:

- 1) Nuclear spectroscopic experiments
- 2) TDPAC (time-differential perturbed angular correlation)
- 3) β -NMR (nuclear magnetic resonance)
- 4) Mössbauer spectroscopy
- 5) Nuclear Resonant Scattering
- 6) Muon, *etc*.

We hope that this report will contribute to a progress in the related research fields.

March 2018

Yoshio Kobayashi	(The University of Electro-Communications)
Michihiro Shibata	(Radioisotope Research Center, Nagoya University)
Yoshitaka Ohkubo	(Research Reactor Institute, Kyoto University)
	Editors

目 次

- 1,4-ビス(4-ピリジル)ベンゼン型架橋配位子を用いた鉄(II)集積型錯体のスピンクロスオーバー現象・・(5) 広島大院理¹、広島大 N-BARD² 吉浪啓介¹、中島 覚^{1,2}
- 4) エチレンおよびアセチレン・マトリックス中に注入された Fe 原子のメスバウアースペクトル・・(12) 電通大院¹,理研²,東理大理³,ICU⁴,阪大理⁵,金沢大理工⁶,北陸大⁷,放医研⁸ 小林義男^{1,2},山田康洋³,久保謙哉⁴,三原基嗣⁵,佐藤渉⁶,宮崎淳⁷,長友傑², 高橋賢也¹,谷川祥太郎¹,佐藤祐貴子¹,名取大樹¹,小林潤司⁴,佐藤眞二⁸,北川敦志⁸

- 8) ミュオンスピン緩和法によるアルミ合金中の原子空孔研究 ·······(31) 富山大院理工¹、理研仁科セ²、茨城大工³、東工大院⁴、RAL⁵、NTNU⁶、SINTEF⁷ 西村克彦¹、松田健二¹、畠山大智¹、布村紀男¹、松崎禎市郎²、渡邊功雄²、伊藤吾朗³、 橋本明³、里達雄⁴、フランシス プラット⁵、ランディ ホルメシュタット⁶、 シグード ウェナー⁷、カリン マリオアラ⁷

9) 重い電子化合物 Sm T₂A1₂₀(T: 遷移金属) における Sm 価数と磁性······(34) 高輝度光科学研究センター、電気通信大学¹、東京理科大²、国際基督教大学³、 首都大学東京4 筒井智嗣、中村仁¹、小林義男¹、天笠翔太²、山田康洋²、久保謙哉³、 水牧仁一朗、依田芳卓、山田瑛4、東中隆二4、松田達磨4、青木勇二4 10) 双安定性を示す Hofmann-like 高分子錯体 ······ (40) 東邦大理¹、 東邦大複合物性センター² 北澤孝史^{1,2}、関谷円香¹、高橋正^{1,2} 11) 鉄混合原子価錯体における連結異性と電荷移動相転移に及ぼす効果のメスバウアー分光研究・・(45) 豊田理化学研究所 小島憲道 12) スピネル型化合物中 Cd-111 の核スピン緩和 ····· (53) 金大理工1、一関高専2、京大原子炉3 佐藤 涉1、小松田沙也加2、大久保嘉高3 電通大院¹,理研²,東理大理³, ICU⁴, 阪大理⁵,金沢大理工⁶,北陸大⁷, 放医研⁸ 高濱矩子¹,小林義男^{1,2},山田康洋³,久保謙哉⁴,三原基嗣⁵,佐藤渉⁶,長友傑², 宮崎淳⁷, 佐藤眞二⁸, 北川敦志⁸ 14) LaBr₃シンチレーターを用いた励起準位の寿命測定 ······ (61) 名大院工¹、名大アイソトープ総合センター² 大野臣悟1、小島康明2、柴田理尋2 15) KISS、超微細構造測定と質量測定の現状・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(66) 高エネルギー加速器研究機構和光原子核科学センター¹、筑波大数理物質科学研究科²、 理化学研究所仁科加速器研究センター3 宫武宇也¹、和田道治^{1,3}、渡邊裕¹、平山賀一¹、Peter Schury¹、小柳津充弘¹、垣口豊¹、 木村創大^{2,1,3}、向井もも^{2,1,3}、Murad Ahmed^{2,1}, Junyoung Moon⁴, and Jinhyung Park⁴ 16) 湿式法による亜鉛-鉄複合酸化物微粒子の合成 …………………………………………(70) 東理大¹、電通大²、理研³ 伊藤帆奈美1、天笠翔太1、西田直樹1、小林義男2,3、山田康洋1 17) 液中レーザーアブレーションで生成した炭化鉄微粒子のレーザー光照射による変化・・・・・・(75) 東理大¹、電通大²、理研³

天笠翔太1、西田直樹1、小林義男2,3、山田康洋1

CONTENTS

 Present Status of Mössbauer Spectroscopy in Kyoto University Reactor
 2) Spin-Crossover Phenomenon of Iron(II) Assembled Complex Using 1,4-Bis(4-pyridyl)benzene Type Bridging Ligand
 3) Production of Iron Oxide Nanoparticles by Chemical Method
 4) In-Beam Mössbauer Spectra of Fe Atoms Implanted into Ethylene and Acetylene Matrices at Low Temperatures
 5) β -NMR of ⁹C
 6) Mechanism of Spin Polarization of ¹²N via (p, n) Reaction in Inverse Kinematics

 7) Development of Spin 1/2 Beta-NMR Probe Nuclei ¹⁵C, ¹⁷N
 8) μSR Study of Atomic Vacancies in Al Alloys
 9) Sm Valence States and Magnetic Properties in Heavy Fermion Compounds Sm<i>T</i>₂Al₂₀ (<i>T</i>: Transition Metals) Investigated by ¹⁴⁹Sm Synchrotron-Radiation-Based Mössbauer Spectroscopy
 10) Hofmann-Like Coordination Polymers with Bistable States
 11) Study of the Linkage Isomerization and Its Influence on the Charge Transfer Phase Transition for Iron Mixed-Valence Complexes by Means of Mössbauer Spectroscopy
 12) Nuclear Spin Relaxation of ¹¹¹Cd in a Spinel Compound
 13) In-Beam Mössbauer Spectroscopy of ⁵⁷Fe after ⁵⁷Mn Implantation into CaF₂

14) Lifetime	e Measurement of Excited Levels Using LaBr ₃ Scintillator
2	Radioisotope Research Center, Nagoya University
15) Present 1 2 3 4	Status of Hyperfine Structure Measurements and Mass Measurements at KISS
16) Synthes: I 2 3	is of Zinc-Iron Oxide Nanocomposite by Wet Chemical Method
17) Effects of by Lase 1 2 3	of Laser Irradiation on Iron Carbide Nanoparticles Produced er Ablation in Organic Solvent

京大原子炉におけるメスバウアー分光の現状

Present Status of Mössbauer Spectroscopy in Kyoto University Reactor

京大原子炉¹、京大院理² 北尾真司¹、小林康浩¹、窪田卓見¹、齋藤真器名¹、増田亮¹、黒葛真行¹、 石橋宏基²、細川修一²、瀬戸誠¹ S. Kitao¹, Y. Kobayashi¹, T. Kubota¹, M. Saito¹, R. Masuda¹, M. Kurokuzu¹, H. Ishibashi², S. Hosokawa², and M. Seto¹ ¹Research Reactor Institute, Kyoto Univ. ²Graduate School of Science, Kyoto Univ.

1. はじめに

物質のさまざまな性質を理解するためには、ある一つの元素に着目して現象の本質を見出すこと が極めて有効であるが、ある特定の元素(核種)だけについて電子状態や振動状態の情報を抽出す ることができるメスバウアー分光は非常に強力な分光法である。原子核は核種ごとに多様な性質を 持ち[1]、メスバウアー効果が原理的に観測可能な原子核準位は100種類以上が知られていること から、多くの核種のメスバウアー分光実験への応用が可能である。しかしながら、一般的なメスバ ウアー分光では、放射性同位元素の入手や管理の制限から、比較的取扱が容易な密封線源により実 施可能な⁵⁷Feまたは¹¹⁹Snに限られており、それ以外の核種はほとんど行われていないのが現状で ある。一方、本実験所では研究炉(KUR)による中性子照射やライナックの利用により短寿命線源を 生成して、多様な非密封の放射性同位元素の取り扱いができる環境が整っているという世界的にも 極めて限られた設備を有する。本研究は本実験所の特性を最大限に生かし、多種の元素のメスバウ アー分光法を開発して、これらを多様な分野に応用し、新たな研究を拡大することを目指している。

<u>2.本実験所で実施しているメスバ</u> ウアー分光核種

本実験所ではこれまでより、密封 線源によるメスバウアー分光 (Table.1)の研究を積極的に行って いる。密封線源では研究炉の運転に かかわらず、実験を実施することが 可能であり、これまで数多くの成果 が得られてきた。また、研究炉の照 射による(n, γ)反応で生成する短 寿命核種を利用したメスバウアー 分光(Table.2)についても、積極的 に実施してきた。これらの核種のメ スバウアー分光実験については、稀 有な装置である強磁場メスバウア ー分光装置と組み合わせることに よっても、貴重な実験成果が得られ ている。

研究炉による中性子照射を行う

Möss-	Energy	Half	Source	Source	Source
bauer	(keV)	life	iso-	Materi-	half
Isotope		(ns)	tope	al	life
⁵⁷ Fe	14.4	98.3	⁵⁷ Co	Co in Rh	271.8d
¹¹⁹ Sn	23.9	18.0	^{119m} Sn	$CaSnO_3$	293.1d
¹⁵¹ Eu	21.5	9.6	$^{151}\mathrm{Sm}$	SmF_3	90y

Table 1. Mössbauer isotopes available at present by using sealed sources.

Möss-	Energy	Half	Source	Source	Source
bauer	(keV)	life	iso-	Materi-	half
Isotope		(ns)	tope	al	life
¹²⁵ Te	35.5	1.48	^{125m} Te	$Mg_{3}TeO_{6}$	57.4d
^{129}I	27.8	16.8	¹²⁹ Te	ZnTe	69.6m
			^{129m} Te	Mg_3TeO_6	33.6d
¹⁹⁷ Au	77.4	1.91	¹⁹⁷ Pt	Pt	19.9h

Table 2. Mössbauer isotopes available at present by using unsealed sources irradiated at Reactor.

場合、その照射設備は生成する線源の半減期により使い分けを行っている。比較的短寿命の¹⁹⁷Pt、 ¹²⁹Teの生成では、圧気輸送管により、1MW運転で4時間、または5MW運転で1時間の照射を行う。 ¹⁹⁷Ptの生成は¹⁹⁶Pt金属箔を用い、¹²⁹Teの生成は⁶⁶Zn¹²⁸Te粉末をポリスチレン樹脂で固化したもの を用いて、それぞれ¹⁹⁷Auおよび¹²⁹Iメスバウアー実験に使用している。線源は繰返し照射して実験 に用いることができる。一方、比較的長寿命の¹²⁵Te、¹²⁹Teの線源作成では、長期照射プラグによ る数週間の照射または水圧輸送管による1週間の照射を行う。照射試料はそれぞれ、¹²⁴Te、¹²⁸Teで 濃縮した Mg₃TeO₆の粉末を石英管に封入したものを使用し、照射後にアニールの後、ポリスチレン 樹脂に固化して、それぞれ¹²⁵Te、¹²⁹Iメスバウアー線源として用いる。実験後に減衰した線源は、 加熱してポリスチレン樹脂を除去することで、粉末にして再照射に使用することができる。Mg₃TeO₆ は室温での無反跳分率が大きく、室温での実験が可能であるという利点があるが、照射による損傷 のため、アニールが必要である。そのため、比較的長寿命の線源の実験に用いることができる。

3. 本実験所で実施をめざすメスバウアー分光核種

近年、原子炉規制基準 の見直しなどの事情によ り研究炉の運転が休止し、 研究炉を利用したメスバ ウアー分光が実施できな い状況が続いていた。ま た、将来的には原子炉の 運転停止が見込まれるこ とから、研究炉を利用し ない線源の生成を検討す ることが重要になってき た。本実験所ではライナ ックを利用し、電子線を Pt ターゲットに照射して 高エネルギーのガンマ線 を発生させ、(γ,n) また は(y,p)の光核反応に より核種生成を行うこと

Mössbauer	Energy	Half	Source	Source	Obtaining
Isotope	(keV)	life	isotope	half	reaction
		(ns)		life	
⁶¹ Ni	67.4	5.34	⁶¹ Co	1.65h	(γ,p)
⁶⁷ Zn	93.3	9160	⁶⁷ Cu	61.8h	(γ,p)
127 I	57.6	1.95	¹²⁷ Te	9.35h	(n, γ), (γ, p)
			$^{127\mathrm{m}}\mathrm{Te}$	109d	$(n, \gamma), (\gamma, p)$
¹⁵⁷ Gd	63.9	460	¹⁵⁷ Eu	15.2h	(γ,p)
¹⁶¹ Dy	25.7	29.1	¹⁶¹ Tb	6.88d	$(n, \gamma)^{*)}, (\gamma, p)$
¹⁶⁶ Er	80.6	1.82	¹⁶⁶ Ho	26.8h	(n, γ), (γ, p)
¹⁶⁹ Tm	8.41	4.08	¹⁶⁹ Er	9.4d	$(n, \gamma), (\gamma, n)$
¹⁷⁰ Yb	84.3	1.61	¹⁷⁰ Tm	128.6d	(n, γ), (γ, p)
193 Ir	73.0	6.09	¹⁹³ 0s	30.1h	(n, γ)

Table 3. Mössbauer isotopes by using unsealed sources obtained by irradiation at Reactor((n, γ) reaction) or Linac ((γ , n) or (γ , p)reaction) in preparation.

*)¹⁶¹Tb is obtained by β -decay of ¹⁶¹Gd.

が可能である。本研究では、いくつかの核種について線源生成を試みており、メスバウアー分光実験の実施を目指している(Table 3 のうち、(y,n)または(y,p)生成核種)。また本年、研究炉は再稼動を果たし、研究炉を利用した線源生成が可能になったことから、研究炉を利用したメスバウアー分光実験が可能となった。研究炉を積極的に活用し、新たな核種のメスバウアー分光実験を 実用化することを目指した研究も進めている(Table 3 のうち、(n, y)生成核種)。

これらの多様な核種のメスバウアー線源生成手法を実用化することにより、多種の元素のメスバ ウアー分光法が可能になり、多様な分野における高度な応用研究を積極的に展開することが期待で きる。ここでは、新規に実用実験を目指して試行したいくつかの実験の結果について報告する。

3.1 研究炉照射線源による¹⁶¹Dy メスバウアー分光実験

Dy にはメスバウアー効果が観測されるいくつかの準位が知られているが、¹⁶¹Dy の 25.65keV が最 も実験に都合がよく、多くの実験が行われてきた[2]。線源としてはβ崩壊で¹⁶¹Dy に崩壊する¹⁶¹Tb (半減期 6.88 日)が用いられている。研究炉の照射においては、¹⁶⁰Gd の中性子照射により¹⁶¹Gd(半 減期 3.7分)が生じるが、¹⁶¹Gd の β 崩壊 により生成する¹⁶¹Tb を用いることがで きる。メスバウアー吸収スペクトルに分 裂が生じない(シングルピークの)線源 物質はいくつか知られているが、少量の Gd を Mg に固溶させた合金が線源として 使用されている[3]。ここでは、Gd-Mg 合金(Gd 約 3.5at%)を作成して、圧気 輸送管による 5MW 運転で1時間の照射を 行った。Gd としては、同位体濃縮してい ない天然のものを使用したため、副生成 物として¹⁵⁹Gd(半減期 18.5時間)が生 成するが、照射から約 1 週間程度待って から使用することにより副生成物を減 衰させることができる。¹⁶¹Tb 線源から観

Fig. 1. $^{161}\text{Dy-M\"ossbauer}$ spectrum of DyF_3 using ^{161}Tb source in Gd-Mg alloy irradiated at Reactor.

測される 25.65keV の γ線は Xe ガス比例計数管によりエネルギー弁別することができ、シングルピークの吸収体として DyF₃を用いて¹⁶¹Dy メスバウアースペクトルを測定した(Fig.1)。測定温度は 室温である。その結果、シングルピークのスペクトルが得られ、線源として使用可能であることが 確認できた。今後、スペクトル線幅のより狭い線源物質の作成や、線源の形状や取扱方法の便宜、 測定可能温度などを考慮した線源物質の最適化を行い、Dy メスバウアー分光の実用化を進める予定 である。

3.2 ライナック照射線源による¹⁶¹Dy メスバウアー分光実験

実験所においては、電子線ライナックを用いた実験が可能であるが、Pt ターゲットにより高エネ ルギーのγ線を発生させることが可能であり、これを用いた光核反応による核種生成が可能である。 ¹⁶¹Dy メスバウアー分光の線源として用いる¹⁶¹Tb は¹⁶²Dy の(γ, p)反応により生成することが可能 である。この実験では、天然の Dy 金属を照射したが、¹⁶¹Dy の(γ, p)反応により¹⁶⁰Tb(半減期 72.3 日)が副生成物となる。これは、¹⁶¹Tb より半減期が長く、減衰を待って影響を小さくすることがで きないため、Ge 半導体検出器により

25. 65keV の γ 線のエネルギー弁別を 行った。Fig. 2 はシングルピークの吸 収体である DyF₃を用いて、¹⁶¹Dy メスバ ウアースペクトルを測定したもので ある。測定温度は室温である。その結 果、吸収スペクトルが観測され、¹⁶¹Dy メスバウアー分光の実験が可能であ ることが実証された。今後、シングル ピークの線源物質の作成や、同位体濃 縮などにより測定効率を向上するこ とにより、実用化を目指す予定である。

Fig. 2. $^{161}\text{Dy-M\"ossbauer}$ spectrum of DyF_3 using ^{161}Tb source in Dy metal irradiated at Linac.

3.3 研究炉照射線源による¹⁶⁶Er メスバウアー分光実験

Er のメスバウアー準位はいくつか知られているが、¹⁶⁶Er の 80.56keV の準位が主として用いられている[2]。線源としては¹⁶⁶Ho(半減期 26.8時間)を用いることができ、¹⁶⁵Ho は天然存在比 100%

のため、天然のHoを用いて研究炉の中 性子照射することにより生成すること ができる。線源物質はいくつか知られて いるが、初期の実験ではHoAl₂が用いら れている[4]。ここではHoとAlの各金 属からアーク溶解にて合成したHoAl₂を 用いた。中性子照射は圧気輸送管におい て1MWで5分の照射を行った。80.56keV のガンマ線はCeBr₃シンチレーション検 出器によりエネルギー弁別を行い、Er₂O₃ の吸収体を用いて、Erメスバウアース ペクトルを測定した(Fig.3)。HoAl₂は 約27Kにて強磁性転移を示し、転移温度 より低温では磁気分裂のため線源とし

Fig. 3. $^{166}\mbox{Er-M\"ossbauer}$ spectrum of $\mbox{Er}_2\mbox{O}_3$ at 40K using $^{166}\mbox{Ho}$ source in HoAl_2 irradiated at Reactor.

ては適さないため、線源と試料を 40K に

して測定を行った。その結果メスバウアースペクトルの測定が十分可能であることが実証された。 HoA1₂線源を用いた応用実験は可能であるが、HoA1₂の転移温度より低温で測定する必要がある場合 には、Ho_{0.4}Y_{0.6}H₂などの他の線源物質を用いる必要がある[5]。

4. まとめ

本研究では、¹⁶¹Dy および¹⁶⁶Er のメスバウアー分光のための、シングルピーク線源物質の作成を 行い、研究炉照射により各メスバウアー分光が実施可能であることが実証された。また、ライナッ クを用いた照射により¹⁶¹Dy メスバウアー分光の線源の生成が可能であり、研究炉とライナックの 相補的な利用により線源の生成が可能であることが確認された。今後、応用実験を行うとともに、 他の線源物質の作成や実験手法の効率化などにより、測定手法の向上と分光実験可能な核種の拡大 を進める予定である。

参考文献

[1] "Table of Isotopes" 8th ed. 1999 update, R. B. Firestone (Wiley-VCH. 1999).

[2] "Mössbauer Spectroscopy" N. N. Greenwood and T. C. Gibb (Chapman and Hall, London, 1971).

[3] G. J. Bowden, D. St. P. Bunbury, J. M. Williams, Proc. Phys. Soc. 916, 12 (1967).

[4] R. L. Cohen and J. H. Wernick, Phys. Rev. 134, B503 (1964).

[5] J. Stöhr and J. D. Cashion, Phys. Rev. B 12, 4805 (1975).

1,4-ビス(4-ピリジル)ベンゼン型架橋配位子を用いた

鉄(II)集積型錯体のスピンクロスオーバー現象

Spin-Crossover Phenomenon of Iron(II) Assembled Complex Using 1,4-Bis(4-pyridyl)benzene Type Bridging Ligand

広島大院理¹、広島大 N-BARD²

吉浪啓介¹、中島 覚^{1,2}

K. Yoshinami¹ and S. Nakashima²

¹Graduate School of Science, Hiroshima University

²Natural Science Center for Basic Research and Development, Hiroshima University

<u>1. はじめに</u>

鉄(II)正八面体型錯体は配位子場強度に応じて高スピン状態(HS, S=2) と低スピン状態(LS, S=0) の二つのスピン状態を取ることができ、中程度の配位子場強度では、外部からの熱、光、圧力とい った刺激により HS 状態と LS 状態を行き来するスピンクロスオーバー(SCO) 現象を発現する。こ れまでにビス(ピリジル)型架橋配位子を用いた鉄(II)集積型錯体において、多様な集積構造形成 や SCO 挙動の変化が見られている。^{[1]-[8]}これらに対して DFT 計算による理論的アプローチから、 SCO 現象の発現には鉄に配位している配位子の構造が大きく寄与していることが示唆されている。 ^{[9][10]}この計算を踏まえて、1,4-ビス(4-ピリジル)ベンゼンにメチル基を導入した架橋配位子を用いて

鉄(II)集積型錯体を合成し、SCO 現象 について調査したところ、メチル基を 二つ導入した場合、SCO 現象の転移温 度が無置換のものより低下し、四つ導 入した場合 SCO 現象を発現しなかっ た。^{[11][12]}そこで本研究では配位子に対 する置換基の影響を系統的に調べるた め、新たに3種類の架橋配位子1、2 および3(Fig.1)、そしてそれらを架橋 配位子とし、アニオン性配位子として NCBH₃-を用いた鉄(II)集積型錯体 1a、

Fig. 1 Description of complex(Left) and bridging ligand(Right).
(R = ethyl(1), *iso*-propyl(2) and *n*-propyl(3))

2a および 3a を合成し、SCO 現象の発現と挙動について調べた。

2. 実験

架橋配位子 1、2 および 3 は全て鈴木-宮浦カップリング反応によって合成した(Fig.2)。錯体 1a、 2a および 3a の合成は溶媒中で硫酸鉄(II)七水和物と 2 当量の NaNCBH₃から[Fe(NCBH₃)₂]をまず合 成し、この溶液に架橋配位子を溶かした溶液を直接混合することによって行った。また単結晶の合成は拡散法によって行った。合成した錯体について、粉末 X 線回折を 20=5°~50°の範囲で測定し、得られた単結晶について単結晶 X 線構造解析を行った。スピン状態および SCO 挙動について、メスバウアー分光測定を室温と液体窒素温度で行い、磁化率測定は 10K~300K の範囲で昇温過程と降温過程を1サイクル測定した。また得られた磁化率について反磁性補正を行った。

Fig. 2 Reaction scheme of synthesis for each ligand. (R = ethyl(1), *iso*-propyl(2) and *n*-propyl(3))

3. 結果と考察

配位子合成の結果 1、2 および 3 はそれぞれ収率 71%、58%、50%で得られた。錯体は直接混合 によって薄緑色(1a)、黄白色(2a)、黄緑色(3a)の粉末が得られ、拡散法から 1a および 3a の単結晶が 得られた。各錯体の粉末 X 線回折パターンは比較的近いが、一定の違いが見られたことから結晶構 造が置換基の導入により変化していると考えられる。室温と低温(78K)でのメスバウアースペクト ルを測定したところ、1a および 2a において低温で 2 価鉄イオンの HS 状態と LS 状態の両方が観測 されたが、3a では HS 状態のみが観測された。この結果から 1a および 2a における SCO 現象の発 現が示唆される。磁化率測定の結果、1a はヒステリシスを伴う不完全な SCO 現象が見られ、転移 温度は $T_{1/21} = 192K$ 、 $T_{1/21} = 181K$ であった(Fig. 3)。2a は $T_{1/2} = 186K$ の不完全な SCO 現象を示した が、ヒステリシスは見られず、3a では SCO 現象は発現しなかった。この結果から置換基を変更し

たことで SCO 現象の挙動が変化することがわかった。 単結晶 X 線構造解析の結果、1a および 3a はともに 2 次元グリッドを形成して、積層していることがわか った。配位したピリジンの構造はどちらの錯体にお いても SCO 現象を示さない局所構造であり、^{[9][10]}こ れに加えてアニオン性配位子は NCS⁻より配位子場強 度の少し大きい NCBH₃⁻を用いたことが不完全な SCO 現象および SCO 現象を発現しなかった原因と考 えられる。また 3a の集積構造中では隣接する配位子 の置換基間に立体反発が見られた。LS 状態では鉄と 窒素の結合距離が HS 状態と比較して短い。そのため LS 状態をとることで置換基間の距離が短くなり、立 体反発が増大し、LS 状態が不安定化されるため 3a で は SCO 現象を発現しないと考えられる。

Fig.3 Magnetic property of 1a.

<u>4. まとめ</u>

本研究において新しい置換基を持つ1,4・ビス(4・ピリジル)ベンゼン型架橋配位子を3種類合成し、 それぞれを用いて3種類の錯体を合成した。合成した錯体のスピン状態およびSCO挙動について 調べたところ、置換基の違いによってSCO挙動に変化が見られた。単結晶X線構造解析から鉄に 配位しているピリジンはSCO現象を発現しないと考えられる局所構造であった。また、アニオン 性配位子がNCS より配位子場強度の少し大きいNCBH3 を用いたが、集積構造中に置換基間の立体 反発が存在することから、LS状態が不安定化されており、不完全なSCO現象を引き起こし、また SCO現象の発現を阻害していると考えられる。

参考文献

- [1] Real, J. A., et al., Science, 268, 265-267, 1995.
- [2] Moliner, N., et al., Inorg. Chem., 39, 5390-5393, 2000.
- [3] Halder, G. J., et al., Science, 298, 1762-1765, 2002.
- [4] T. Morita, et al., Chem. Lett., 35, 9, 1042, 2006.
- [5] M. Atsuchi, et al., Chem. Lett., 36, 1064, 8. 2007.
- [6] Neville, S. M., et al., J. Am. Chem. Soc., 131, 12106-12108, 2009.
- [7] M. Atsuchi, et al., Inorgnica Chimica Acta, 370, 82-88, 2011.
- [8] S. Nakashima, et al., *polymers*, **4**, 880-888, 2012.
- [9] M. Kaneko, S. Tokinobu, and S. Nakashima, Chem. Lett., 42, 1432-1434, 2013.
- [10] M. Kaneko and S. Nakashima, Bull. Chem. Soc. Jpn., 88, 1164-1170, 2015.
- [11] Xue-Ru Wu, et al., Inorg. Chem., 54, 3773-3780, 2015.
- [12] K. Yoshinami, et al., Radioisotopes, 66, 625-632, 2017.

化学的手法による新奇な鉄酸化物ナノ粒子の作製

Production of Iron Oxide Nanoparticles by Chemical Method

東理大理¹、電通大²、理研³ 西田直樹¹、天笠翔太¹、小林義男^{2,3}、山田康洋¹ N. Nishida¹, S. Amagasa¹, Y. Kobayashi^{2,3} and Y. Yamada¹ ¹Faculty of Science, Tokyo University of Science ²The University of Electro-Communications ³RIKEN

1. はじめに

金属化合物はナノメートルサイズにすることで様々な物性が発現する。鉄化合物も例外ではなく、 ナノサイズにすることで、バルク状態では存在が確認できなかった結晶構造を発現することがある [1,2]。さらに、微粒子になることで強磁性体が超常磁性体になることも知られているが、このよう な超常磁性微粒子は、ドラッグデリバリーシステムや核磁気共鳴画像法 (MRI)、バイオセンシング に応用するための素材として期待されている[3]。

さらに、鉄ナノ粒子に他の金属を複合させた複合ナノ粒子も以前より研究がなされている。例え ば銀を複合させることによって、反応性が大きく向上することも報告されている[4]。しかし、これ までの複合ナノ粒子では、高温条件や不活性ガス雰囲気下での合成が必要であるなどの課題があっ た。

本研究では、化学的手法を用いて室温・大気下で銀複合鉄酸化物ナノ粒子を合成し、X 線回折 (XRD)・透過型電子顕微鏡 (TEM)・メスバウアー分光法による測定を行った。

2. 実験

複合ナノ粒子は、硝酸銀と硫酸鉄の濃度比を1:9、2:8 で作製した。濃度比が1:9 のサンプルを S1、2:8 を S2 とする。作製法は硝酸銀と硫酸鉄(II)、酒石酸ナトリウム、ゼラチン、水酸化ナトリ ウム、精製水をフラスコに入れ溶解させた後、還元剤であるヒドラジン水溶液を5分間かけて滴下 した。その後、超音波照射を40分間行い1時間静置することで沈殿物を得た。得られた沈殿物を 遠心分離した後、水とエタノールにて洗浄し微粒子を得た。合成した微粒子は XRD (RIGAKU RINT2500 Cu-Kα線)、TEM (日本電子 JEM-2100)、⁵⁷Co/Rh 線源を用いた透過型メスバウアー分光法 により分析した。

3. 結果

Fig. 1 に XRD 測定の結果を示す。二つのサンプルはともにマグへマイト (JCPDS Card No.

00-025-1402) と金属銀 (JCPDS Card No. 00-04-0783) で構成されていることが分かった。また、銀フェライ (JCPDS Card No. 00-021-1080 あるいは F 00-021-1081)のシグナルは観測されなかった。この結 果より、得られたサンプルは銀フェライトのように銀 原子が鉄化合物にドープされたわけではなく、金属銀 とマグへマイトが分離された状態であることが分か った。また、マグヘマイトのピークはブロードであり 金属銀のピークはシャープであった。これは、マグへ マイトのサイズが小さく、金属銀のサイズは大きなこ とを示している。シェラーの式によるマグへマイトの 平均粒径は S1:5 nm、S2:2 nm であった。一方、金属銀 の平均粒径は S1:10 nm、S2:11 nm であった。この結果 は、銀の存在量がマグへマイトのサイズに影響を与え ることを示している。

Fig. 2に TEM 像と得られた粒径分布の結果を示す。 2つのサイズの異なる粒子が観測された。XRD 測定の

結果から、10 nm 以下の小さな粒子がマグ ヘマイト、20 nm 程度の大きな粒子が金属 銀であると考えられる。また、マグヘマイ トの粒径は S2 のほうが小さく、粒径分布 も狭い結果となった。この結果は XRD の 結果とも一致した。

XRD 測定では、マグヘマイトとマグネ タイト (JCPDS Card No. 00-019-0629)がよ く似ているため区別できない。そこで得ら れたサンプルのメスバウアースペクトル の測定を行った。S1 のメスバウアースペ クトルを Fig. 3a に示す。また、得られたパ ラメーターは Table 1 に示す。室温では、 ダブレットと緩和成分が観測された。この ダブレットは、微粒子のサイズが小さいこ とによる超常磁性ダブレットである。さら に、低温 (7 K) で測定したメスバウアース ペクトルでは、1 成分のセクステットと内 部磁場分布が観測された。内部磁場分布は、

Fig. 1. X-ray diffraction pattern of as-prepared samples.

Fig. 2. TEM images and particle size distributions of as-prepared samples.

Fig. 3. Mössbauer spectra at different temperatures of (a) S1 and (b) S2.

С	omponent	δ /mms ⁻¹	$\Delta E_{\rm Q}$ /mms ⁻¹	H /kOe	Г /mms ⁻¹	Yields /%
293 K	(i)	0.28(4)	-0.37(35)	516 ^a	0.99(45)	38.7
	(ii)	0.33(0)	0.71(1)		0.68(2)	61.3
7 K	(iii)	0.45(1)	0.02(1)	516(0)	0.68(2)	67.2
	(iv)	0.43(1)	-0.02(2)	486 ^b		32.8

Table 1 Mössbauer parameters of S1

^a Relaxation time $\tau = 0.3$ ns

^b Hyperfine magnetic field at the mode of the distribution

			I			
C	Component	δ /mms ⁻¹	$\Delta E_{\rm Q}$ /mms ⁻¹	H /kOe	Г /mms ⁻¹	Yields /%
293 K	(i)	0.33(1)	0.67(1)		0.61(1)	
3 K	(ii)	0.52(1)	0.02(2)	531(1)	0.63(3)	61.3
	(iii)	0.49(1)	-0.01(2)	504ª		38.7

Table 2 Mössbauer parameters of S2.

^a Hyperfine magnetic field at the mode of the distribution

ナノ粒子表面の格子欠陥に由来すると考えられる[5]。また、メスバウアースペクトルからマグネタ

イトは観測されなかった。

Fig.3bにS2のメスバウアースペクトルを示す。また、パラメーターをTable2に示す。室温では、 一つのダブレットが観測された。マグへマイト粒子のサイズが小さくなったことにより、緩和時間 の長い成分が消失した。また低温のスペクトル(3K)では内部磁場の値が大きくなった。この結果 はナノ粒子の結晶性が異なることによる。

銀が不在の場合は、中間体であるマグネタイトの急激な酸化を経てδ-オキシ水酸化鉄になること が以前の我々の研究で見出されている[6]。つまり、Fe^{II}Fe^{III}2O4における2価の鉄が3価に変化する 際にδ-オキシ水酸化鉄に変化するといえる。さらに、銀の代わりに銅を用いた場合は、銅が酸化鉄 にドープすることにより銅フェライトとなる。2価の鉄が銅と入れ替わることにより CuFe^{III}2O4と なる[7]。今回のケースでは、金属銀の存在が中間体であるマグネタイトの急激な酸化を抑制し、緩 やかな酸化を経てマグヘマイトになると考えられる。Zhai らは、Ag-Fe₃O4複合体において、マグネ タイト粒子と銀ナノ粒子の相互作用によって、銀ナノ粒子が安定化することを報告している[8]。本 研究でも金属銀の存在が、前駆体の急激な酸化を抑制することでマグへマイト粒子の生成およびδ-オキシ水酸化鉄の生成の抑制をしたことが示唆された。金属銀はマグへマイトナノ粒子の安定性、 粒子サイズおよび結晶性を制御する効果があることが分かった。

4. 結論

化学的手法により室温条件下で銀複合マグへマイトナノ粒子を得た。2つの異なるサイズのナノ 粒子が観測された。10 nm 以下の小さなナノ粒子をマグへマイト、約20 nm のサイズを持つ大きな 粒子を金属銀とした。マグへマイトナノ粒子は粒子サイズが小さいため超常磁性を示した。出発物 質の銀を増加させることによりマグへマイト粒子の結晶性が高くなった。マグへマイトは前駆体の 緩やかな酸化によって生成した。

<u>5. 参考文献</u>

- [1] I. Kubono, N. Nishida, Y. Kobayashi, Y. Yamada, Hyperfine Interact. 238, 91 (2017).
- [2] S. Sakurai, A. Namai, K. Hashimoto, S. Ohkoshi, J. Am. Chem. Soc. 131, 18299 (2009).

[3] J. Liu, Z. Zhao, H. Feng, F. Cui, J. Mater. Chem. 22, 13891 (2012).

[4] G. Lopes, J.M. Vargas, S.K. Sharma, F. Béron, K. R. Pirota, M. Knobel, C. Rettori, R. D. Zysler, J. Phys. Chem.C 114, 10148 (2010).

- [5] Y. Yamada, R. Shimizu, Y. Kobayashi, Hyperfine Interact. 237, 6 (2016).
- [6] N. Nishida, S. Amagasa, Y. Kobayashi, Y. Yamada, Appl. Surf. Sci., 387, 996 (2016).
- [7] N. Nishida, S. Amagasa, Y. Kobayashi, Y. Yamada, Hyperfine Interact. 237, 111 (2016).
- [8] Y. Zhai, L. Han, P. Wang, G. Li, W. Ren, L. Liu, E. Wang, S. Dong, ACS Nano. 5, 8562 (2011).

エチレンおよびアセチレン・マトリックスに注入された Fe原子のインビーム・メスバウアースペクトル In-Beam Mössbauer Spectra of Fe Atoms Implanted into Ethylene and Acetylene Matrices at Low Temperatures

電通大院¹,理研²,東理大理³, ICU⁴, 阪大理⁵,金沢大理工⁶,北陸大⁷, 放医研⁸ 小林義男^{1,2},山田康洋³,久保謙哉⁴,三原基嗣⁵,佐藤渉⁶,宮崎淳⁷,長友傑², 高橋賢也¹,谷川祥太郎¹,佐藤祐貴子¹,名取大樹¹,小林潤司⁴,佐藤眞二⁸,北川敦志⁸ Y. Kobayashi^{1,2}, Y. Yamada³, M. K. Kubo⁴, M. Mihara⁵, W. Sato⁶, J. Miyazaki⁷, T. Nagatomo², K. Takahashi¹, S. Tanigawa¹, Y. Sato¹, D. Natori¹, J. Kobayashi⁴, S. Sato⁸ and A. Kitagawa⁸ ¹Univ. Electro-Communications, ²RIKEN Nishina Center, ³Fac. Sci., Tokyo Univ. Sci., ⁴Int. Christ. Univ., ⁵Dep. Phys, Osaka Univ., ⁶Ins. Sci. Eng, Kanazawa Univ., ⁷Hokuriku Univ., ⁸Nat. Ins. Radiol. Sci.

短寿命57Mn ($T_{1/2}$ = 89秒)をエチレンおよびアセチレンの低温マトリックスにイオン注入した57Feイン ビーム・メスバウアースペクトルを測定した。得られたメスバウアーパラメータと密度汎関数計算から、 エチレン・マトリックスではFe(C₂H₄)₂ (Fe⁰, S = 1), [Fe(C₂H₄)₃]⁺ (Fe⁺, S = 3/2), [Fe(C₂H₄)₂]⁺ (Fe⁺, S = 3/2)の Fe化学種が生成したと帰属した。アセチレンにおいては、Fe(C₂H₂)₂]⁺ (Fe⁺, S = 3/2), [(C₂H₂)FeCCH₂]⁺ (Fe⁺, S = 3/2)が生成したことを確認した。

1. 序

単一原子の化学反応は、物質や不均一触媒表面の反応機構や反応生成物に関する有用な情報を提供す る。メスバウアー分光法と赤外分光法を組み合わせたマトリックス単離法は、ある条件下での単一原子 と気体分子との反応生成物を研究する方法として広く応用されてきた。Parkerら[1]やYamadaら[2]は、蒸 発したFe原子とエチレン分子との反応をマトリックス単離法により研究し、⁵⁷Fe吸収メスバウアー分光 法と赤外吸収分光法を用いてFe生成物を同定した。主要な生成物は、エチレン濃度に依存して、Fe(C₂H₄) やFe(C₂H₄)₂であったと報告した。van der Heydenら[3]は、4.2 Kに保持したエチレン固体に⁵⁷Coをイオン 注入して、発光メスバウアースペクトルを測定した。得られたメスバウアースペクトルは、ダブレット およびシングレットピークを示し、ダブレットはFeの二重項がC₂H₄との共有結合から生じたFe化学種と 推測した。

これまでに我々は、短寿命⁵⁷Mn (*T*_{1/2} = 89 秒)のイオン注入を用いたインビーム・メスバウアー分光法 を応用して、試料中に孤立したFe原子と酸素分子やメタン分子との反応生成物の帰属とその⁵⁷Feの酸化

12

状態,スピン状態に関する知見を報告した[4,5]。不活性ガス(Ar, Xe)のマトリックス試料では、⁵⁷Fe周囲 の電子状態と配位環境について研究した[6,7]。一昨年,エチレンとアルゴンの混合ガスマトリックス (C2H4:Ar = 3:7)中のFe原子の反応生成物を報告した[8]。反応生成物はFe(C₂H₄) (Fe⁰, S = 2)とFe(C₂H₄) (Fe⁰, S = 3/2)とした。しかし、メスバウアースペクトルの解釈では、エチレン濃度が低いために不十分 である可能性があった。本研究では、エチレンの実験を再検討し、⁵⁷Mnからのβ壊変で生じる⁵⁷Feのエ チレンおよびアセチレン分子との反応生成物を調べて、そのFe化学種の電子状態およびスピン状態を同 定したのでここに報告する。Fe化学種の帰属には、分子軌道計算結果と比較検討した。

2. 実験

実験は、放射線医学総合研究所 (NIRS) の重イオンシンクロトロン加速器施設 (HIMAC) で行なった。 エチレンまたはアセチレンの低温マトリックス試料は、それぞれの高純度ガス (C₂H₄ 99.99%、C₂H₂ 99.9%) を2 sccm (1.2×10⁻⁴ m³/h) の流量で、15 Kに冷却保持した金属板にゆっくりと吹き付けて凝集し て作製した。30時間凝集後の固体ガスマトリックスの厚さは約1mmであった。⁵⁷Mn核は、⁵⁸Feビーム (E = 500 MeV/nucleon) を⁹Be標的 (25mm厚) に照射して起こる入射核破砕反応で生成する二次ビームとし て得た。破砕片に含まれる⁵⁷Mn核を 2段のアイソトープ・セパレータ電磁石で分離して最適化した。Pb 板とAI板の減衰材でエネルギーを低下した後、ガスマトリックス試料の十分な深さで⁵⁷Mn核を停止させ た。⁵⁷Mnイオンは、パルスビーム (パルス間隔:3.3秒、パルス幅:0.25秒) で供給される。14.4keVの γ 線測定は、ビームオフ時に検出積算した。⁵⁷Mnビームの強度は、およそ1.5×10⁶ ppp (particle per spill) で あった[9]。

インビーム・メスバウアースペクトルの測定には、ガス充填共鳴検出器である平行平板電子なだれ型 検出器 (PPAC) を用いた。カウンターガスにはパーフルオロプロパン (C₃F₈) を用いた。PPACと試料の 間に厚さ0.5 mmのプラスチックシンチレータ (BC-400、Bicron) を配置し、 $\beta - \gamma$ 反同時計測法を使って ⁵⁷Mnから放出される β 線によるバックグラウンドを低減した[9]。

3. 結果と考察

14 Kおよび45 Kのエチレンを試料として得た⁵⁷Fe (\leftarrow ⁵⁷Mn) インビーム・メスバウアースペクトルを Fig. 1に示す。スペクトルは、それぞれ3成分のダブレットまたは2成分のダブレットで解析できた。 Yamadaらによるレーザー蒸発とマトリックス単離実験では、Fe原子のクラスター生成による磁気分裂ピ ークが観測されているが[2]、不安定核⁵⁷Mnをプローブとした実験では観測されなかった。これは、C₂H₄ マトリックス中にFe原子のclusteringなどのFe原子の集合が存在しないことを意味した。ダブレット3成 分(a)、(b)、(c)の面積強度は温度に依存して変化し、14Kで(a):(b):(c)=60:30:10であり、45Kでは(a):(b): (c)=50:50:0となった。面積強度の温度依存性については、Fe化学種の帰属とともに後で説明する。

FeとC₂H₄の反応生成物の化学種とその分子構造の帰属をするためにDFT計算は、B3LYP/VTZP/CPPPPの基底関数によるORCAプログラム3.0.0を用いて核異性体シフト(δ)と四極子分裂(ΔE_0)の値を計算し

13

た [10]。Fe原子と分子が生成する単分子計算では, Fe⁰ (S=2)に あるside-on型Fe(C₂H₄)がHFeC₂H₃、HFeCHCH₂、H₂FeCCH₂などの いくつかのFe化学種より安定構造をとることが示された。しか し, side-on型Fe(C₂H₄)の δ と Δ E_Qの計算値 δ = 0.41 mm/s, Δ E_Q = 2.37 mm/sは,実験で得られたどの成分とも一致しなかった。 C₂H₄固体中のFe原子の周囲には,2個または複数のC₂H₄分子が side-onに配位していることが考えられるので,C₂H₄結晶の座標 をもとにした分子軌道計算を行なった。固相のC₂H₄(*m.p.* = 104 K) は,単斜晶系体心立方構造の空間群*P*2₁/*n* (*C*_{2*h*}) (a = 4.626 Å, b = 6.620 Å, c = 4.067 Å, and β = 94.4°)をとる[11-13]。C₂H₄分子に囲 まれたFe原子で生成されたFe化学種に関して,メスバウアーパ ラメータとして得られた異性体シフトと四極子分裂の実験値と DFT計算による結果をあわせて検討した。

得られたメスバウアーパラメータとDFT計算結果をTable 1に, 構造最適化で得られたFe化学種の分子構造をFig. 2に示す。δ= 0.40(2) mm/s, ΔE_Q = 2.24(3) mm/sを有する成分(a)は, Fe(C₂H₄)₂ (Fe^0 , S = 1)であると帰属できた。 $Fe(C_2H_4)_2$ は、マトリックス単 離法を応用した吸収メスバウアー分光実験で報告されたFe種で もある[1,2]。その分子構造は、Fe原子が2つのC₂H₄分子のほぼ中 間に位置し、2つのC-C結合に対して中心位置を占めた。C2H4 分子間の距離は4.08 Åであり、この距離はC₂H₄結晶格子のc軸 (c = 4.067 Å) の長さに一致した。成分(b)と(c)は, 励起状態のFe⁺(S = 3/2)からなる[Fe(C₂H₄)₃]⁺と[Fe(C₂H₄)₂]⁺と帰属した。(b)の [Fe(C₂H₄)₃]⁺は, Fe⁺イオンから等距離に3つのC₂H₄分子が配位す る構造である。DFT計算では、エネルギー値が最低を示した。 このことは、温度変化に対する安定性が高いことを示唆してお り、メスバウアースペクトルの温度変化の結果と矛盾しない。 分子間距離から、Fe原子はC2H4格子のbcc構造の格子間位置に位 置すると考えられる。(c)の[Fe(C₂H₄)₂]⁺の分子構造は, Fe原子の 周りに互いに直角に配向したC-C結合を有するC₂H₄となった。他 の2つのFe化学種に比べてエネルギーが高く,温度に対して不 安定である。45 Kで測定したメスバウアースペクトルにおいて, 成分(c)が消失した実験結果と一致した。

Fig. 1. In-beam emission Mössbauer spectra of ⁵⁷Fe after ⁵⁷Mn implantation in a C_2H_4 matrix at (1) 14 K and (2) 45 K. The velocity is given relative to α -Fe at room temperature. The sign of the velocity scale is opposite to the conventional absorption experiment.

Fig. 2. Optimized geometries of (a) Fe(C₂H₄)₂ (Fe⁰, S = 1), (b) [Fe(C₂H₄)₃]⁺ (Fe⁺, S = 3/2), and (c) [Fe(C₂H₄)₂]⁺ (Fe⁺, S = 3/2).

Fig. 3は、17 Kおよび65 Kで観測したC₂H₂を注入試料としたイ ンビーム・メスバウアースペクトルである。スペクトルは, (d), (e), (f)の3成分のダブレットで解析した。面積強度の比は、温度 にほぼ関係なく一定で(d): (e): (f) = 45: 43: 12となった。C₂H₂ との反応生成物の最適化構造は、C₂H₄を用いたDFT計算と同じ 要領で行なった。実験およびDFT計算で得たメスバウアーパラ メータをTable 2に、Fe化学種の最適化構造をFig. 3に示す。成分 (d)と(e)の計算値は、実験で得たメスバウアーパラメータとほぼ 一致した. 成分(d)と(e)は、それぞれ[Fe(C₂H₂)₂]⁺ (Fe⁺, S = 3/2)と [(C₂H₂)FeCCH₂]⁺(Fe⁺, S = 3/2)で帰属した。成分(d)のFe原子は, 2個の互いに直角に対向したside-on C₂H₂分子をもちC-C結合間 の中心からずれた位置にある。2個のC2H2分子間の平均長は 4.05 Åとなった。成分(e) [(C₂H₂)FeCCH₂]+では、Fe原子はC-Fe-Cが180°の平面二配位錯体を形成し、長軸の長さは4.64 Åであっ た。C₂H₂固体は、a = 6.094Å、b = 6.034Å、c = 5.578Åの斜方晶系 空間群Pa3の面心立方構造である[14]。これらのFe種の長さは、 最近接C₂H₂分子の間の4.289 Åの距離に相応するので、Fe原子は C₂H₂格子の間隙位置に位置すると考えた。

4. まとめ

57Mnの β 崩壊で生成した57Fe原子とエチレンおよびアセチ レンとの反応生成物について、インビーム・メスバウアー分光 法と密度汎関数計算によって研究した。エチレンとの反応生成 物は、Fe(C₂H₄)₂ (Fe⁰, S = 1)と[Fe(C₂H₄)₃]⁺ (Fe⁺, S = 3/2), [Fe(C₂H₄)₂]⁺ (Fe⁺, S = 3/2)の3つのFe化学種に帰属できた。中 性のFe原子および+1価のFeイオンは、2つまたは3つのC2H4 分子をside-onに有する分子構造をとって存在することを明らか にした。アセチレンとの反応生成物は、[Fe(C₂H₂)₂]⁺ (Fe⁺, S = 3/2) と[(C₂H₂)FeCCH₂]⁺ (Fe⁺, S = 3/2)と同定した。第3成分(f)の化学状 態は現在検討中である。中性のFe0原子は、面心立方構造のC₂H₂

Fig. 3. In-beam emission Mössbauer spectra of 57 Fe after 57 Mn implantation in a C₂H₂ matrix at (1) 17 K and (2) 65 K. The velocity is given relative to α -Fe at room temperature. The sign of the velocity scale is opposite to the conventional absorption experiment.

Fig. 4. Optimized geometries of (d) $[Fe(C_2H_2)_2]+(Fe^+, S = 3/2),$ (e) $[(C_2H_2)FeCCH_2]^+(Fe^+, S = 3/2)$

	Experimental			Calculated			
Species	δ (mm/s)	$\Delta E_{\rm Q} ({\rm mm/s})$	S	δ (mm/s)	$\Delta E_{\rm Q} ({\rm mm}/{\rm s})$	Energy (Eh)	
(a) $Fe(C_2H_4)_2$	0.40(2)	2.24(3)	1	0.53	2.66	-1420.7799	
(b) $[Fe(C_2H_4)_3]^+$	1.32(4)	1.28(6)	3/2	0.90	1.55	-1499.1665	
(c) $[Fe(C_2H_4)_2]^+$	0.62(9)	5.43(2)	3/2	0.73	5.10	-1420.5682	

Table 1 Observed and calculated Mössbauer parameters in C₂H₄ matrices.

Table 2 Observed and calculated Mössbauer parameters in C₂H₂ matrices.

	Experimental		Calculated			
Species	δ (mm/s)	$\Delta E_{\rm Q} ({\rm mm/s})$	S	δ (mm/s)	$\Delta E_{\rm Q} \ ({ m mmmmmm mm}/{ m s})$	Energy (Eh)
(d) $[Fe(C_2H_2)_2]^+$	0.56(2)	4.05(8)	3/2	0.71	4.17	-1418.0649
(e) [(C ₂ H ₂)FeCCH ₂] ⁺	0.72(4)	2.72(2)	3/2	0.68	2.71	-1418.0344

この研究の一部は,科学研究費助成 (C) 25410062 および 16K05012 の補助を受けて行なった。 ⁵⁷Mnビームを調製する上でそのイオン源となる⁵⁸Fe富化フェロセンを合成して頂いた東大総合文化 岡 澤 厚 助教と放医研HIMACの運転スタッフのみなさんに感謝します。

参考文献

- [1] S. F. Parker et al., Inorg. Chem. 22, 2813 (1983).
- [2] Y. Yamada et al., J. Radioanal. Nucl. Chem. 255, 419 (2003).
- [3] M. van der Heyden et al., Hyperfine Interact. 29, 1315 (1986).

- [4] Y. Kobayashi et al., Hyperfine Interact. 166, 357 (2006).
- [5] S. Tanigawa et al., Hyperfine Interact. 237, 72 (2016).
- [6] Y. Yamada et al., Chem. Phys. Lett. 567, 14 (2013).
- [7] Y. Yamada et al., Hyperfine Interact. 226, 35 (2013).
- [8] Y. Kobayashi et al., Hyperfine Interact. 237:151 (2016).
- [9] T. Nagatomo et al., Nucl. Inst. Methods Phys. Res. B 269, 455 (2011).
- [10] F. Neese, WIREs Comput. Mol. Sci. 2, 73 (2012).
- [11] G. J. H. van Nes and A. Vos, Acta Cryst. B 33, 1653 (1977).
- [12] T. Wasiutynski et al., J. Chem. Phys., 69, 5288 (1978).
- [13] A. van der Avoird et al., "Ab initio studies of the interactions of van der Waals molecules", in van der
- Waals Systems (Topics in Current Chemistry), Springer, p1-51 (2005).
- [14] R. K. McMullan et al., Acta Cryst., B48, 726 (1992).

⁹Cのβ-NMR

β-NMR of ⁹C

阪大院理¹、新潟大 RI センター²、新潟大³、放医研⁴、高知工大⁵

杉原貴信1、三原基嗣1、松多健策1、福田光順1、田中聖臣1、大西康介1、八木翔一1、

南園忠則1、泉川卓司2、大坪隆3、本間彰3、北川敦志4、佐藤眞二4、百田佐多生5

T. Sugihara¹, M. Mihara¹, K. Matsuta¹, M. Fukuda¹, M. Tanaka¹, K. Onishi¹, S. Yagi¹,

T. Minamisono¹, T. Izumikawa², T. Ohtsubo³, A. Homma³, A. Kitagawa⁴, S. Sato⁴ and S. Momota⁵

¹Dept. of Phys. Osaka Univ.

²Radioisotope Center, Niigata Univ.

³Dept. of Phys. Niigata Univ.

⁴National Institute of Radiological Science

⁵Kochi Univ. of Tech.

1.はじめに

炭素原子は生体や高分子において非常に中心的な役割を果たす元素であり、その核磁気共鳴 (NMR) は生体分子や高分子などの構造解析および挙動研究に用いられ、工業的にも学術研究にお いても非常に有益な手法として確立されている。そこで活躍するのは自然存在比 1%程度でスピン 1/2 の¹³C であり、その他に自然で存在する ¹²C や ¹⁴C はスピンをもたないため NMR を行うことは できない。一方スピン 1 以上の原子核をプローブとして用いれば、核四重極共鳴 (NQR) によって 固体中の原子が置かれた環境についてより詳細な情報を得ることができる。しかしながら、前述 のように炭素の安定同位体核にはスピン1 以上のものが存在せず、これを行うことができない。

β-NMR は β線放射性核を用いて NMR や NQR を行う手法であり、加速器を用いてスピン偏極した β線放射性核を生成し試料中に打ち込むことで、非常に高感度の NMR や NQR を行うことができる。この手法を用いれば、スピン 1 以上の安定核が存在しない炭素についても $^{\circ}$ C や 17 C といったスピン 3/2 の原子核によって NQR を行うことができ、炭素の構造解析や挙動研究に関連した様々な分野に対して大きな貢献ができると考えられる。

NQR を行うためにはプローブとなる原子核の Q モーメ ントが既知で無ければならないが、現状 $^{\circ}$ C も 17 C も Q モ ーメントが未測定である。そこで今回は、加速器による スピン偏極 $^{\circ}$ C 生成に適した一次ビームや生成標的の条件 の探索、および Q モーメント測定のために必要な電場勾 配をもつ偏極保持試料の探索を行った。右の表 1 にスピ ンをもつ炭素同位体について半減期 $T_{1/2}$ や核モーメント μ , Q の測定の有無などについてまとめた。なお、 11 C につい てはスピン 3/2 で Qモーメントも測られているが、半減期 が 20 分と長く、β-NMR を行うことは難しい。

表1:スピンをもつ炭素同位体核のパ

ラメータと μ , Qの測定の有無

	I^{π}	$T_{1/2}$	μ	Q
$^{9}\mathrm{C}$	$3/2^{-}$	$127 \mathrm{~ms}$	0	未測定
$^{11}\mathrm{C}$	$3/2^{-}$	$20 \min$	\circ	\circ
$^{13}\mathrm{C}$	$1/2^{-}$	stable	\circ	-
$^{15}\mathrm{C}$	$1/2^{+}$	$2.45~{\rm s}$	\circ	-
$^{17}\mathrm{C}$	$3/2^{+}$	$193 \mathrm{~ms}$	\circ	未測定
$^{19}\mathrm{C}$	$(1/2^+)$	$46 \ \mathrm{ms}$	未測定	-

2. 実験

実験は放射線医学総合研究所の重イオンシンクロトロン加速器施設 HIMAC (Heavy Ion Accelerator in Chiba) で行った。図1に示す不安定核ビームライン SB2 [1] にβ-NMR 装置を設置し て実験を行った。表 2 に示したいくつかの一次ビームと生成標的の組み合わせでスピン偏極した ⁹C の二次ビーム生成を行い、そのスピン偏極の大きさと収量から偏極ビームを評価する。スピン 偏極した二次ビームを得るために角度をつけて生成標的に入射した一次ビームは、様々な核種を

生成するが、そこから $^{\circ}$ C のみを SB2 で分離しエネルギーの 揃った二次ビームとして β -NMR 装置へと導いた。また、ビ ームのエネルギーは図 1 に示す Range Adjustment Degrader に よって調整され、全ての $^{\circ}$ C は確実に試料中へと埋め込まれ る。今回偏極確認用のストッパー試料としては Pt 200 µmt (50 µmt × 4 枚)を用い、また電場勾配をもつ試料としては六方晶 である 4H の炭化ケイ素 (4H-SiC) 365 µmt を用いた。炭化ケ イ素はダイヤモンド同様中心の C (Si) に対して Si (C)が 4 つ 配位した正四面体を積み重ねた結晶構造をしているが、ダイ ヤモンドと違って多形であり、四面体の並べ方によって 4H, 6H, 3C など異なる単位格子の結晶構造をもつ。

表 2: ⁹C 生成における一次ビーム と生成標的の組み合わせ

一次ビーム	生成標的
$^{10}\mathrm{B}\;120A~\mathrm{MeV}$	Be 6mm
	$Cu\ 2mm$
	$\rm CH_2~4.4mm$
$^{12}\mathrm{C}$ 120 $A~\mathrm{MeV}$	$Cu\ 2mm$
	Be $8 \mathrm{mm}$

[•]C ビームは静磁場中に置かれたストッパーへと埋め込まれたのち、上下に置かれた β カウンタ ーによってその β線が計数される。β カウンターは上下それぞれ 3 つずつのプラスチックシンチレ ーターからなり、それら 3 つの同時計測によって、β線が計数される。また、ストッパーにはヘル ムホルツ型のコイルが巻きつけられており、これに電流を流すことで任意の周波数の高周波(RF) 磁場を印加できる。ここで $^{\circ}$ Cの磁気モーメントは | μ [$^{\circ}$ C] | = 1.3914(5) μ_N であるため[2]、NMR に おける RF 磁場としては、静磁場 0.4T のもとで周波数 2827 kHz、FM ±10 kHz、約 1.2mT の振動 磁場を用いた。上下の β線係数比 $R = N_u/N_d$ について、RF 磁場を印加しない場合と、Adiabatic Fast Passage (AFP) による偏極反転を行った場合との比 $r = R_{off}/R_{on}$ から β線非対称度の変化 $\delta(AP) = (r^{1/2} - 1)/(r^{1/2} + 1)$ を見ることで、偏極の大きさ APを測定した。ここで、A は β線非対称係数、P は偏極 であり、 $^{\circ}$ Cの β線非対称係数は 0.1 程度と非常に小さい。AP 測定では試料中での $^{\circ}$ Cのスピン-格 子緩和時間 (T_1) を長くするため試料を冷却し、4H-SiC については 1 T の静磁場中で試料温度~ 30K で実験を行った。このとき表皮厚さは約 20 μ m であり、4 枚の 50 μ m の Pt foil に両面から RF 磁場が入ると考えられ、NMR を行うのに充分な磁場が得られた。

図 1: HIMAC の SB2 コース、及び下流の β-NMR 装置

3. 結果

表 2 に示したそれぞれの組み合わせについて、生成標的への入射角度 θ と運動量を適宜選び、 生成された °C ビームについて偏極 AP と β 線の収量を測定した。今回測定した実験の条件につい てまとめたものを表 3 に示す。ここで選んだ運動量の表記は、反応に依るエナジーロスはないと してターゲットの中心で一次ビームと等しい速度の °C に変化した場合の °C の運動量を 100%とし、 角度と運動量の誤差はそれぞれスリットによるアクセプタンスを示している。また、本実験では 途中から β 線の収量を増やすために、β カウンターの立体角を広げ、ストッパーをビームに垂直な 面に対し 45 度傾けて実験を行った。具体的には、β カウンターの上下それぞれの外側 2 つのプラ

一次ビーム	生成標的	θ	Momentum [%]	$AP \ [\%]$	Yield [cps]
¹⁰ B	Be	3.5 ± 0.75	96 ± 2	0.49 ± 1.25	0.52 ± 0.01
	\mathbf{Cu}	3.5 ± 0.75	97 ± 2	0.68 ± 1.32	0.28 ± 0.01
	CH_2	3.5 ± 0.75	95 ± 2	$0.03\ {\pm}0.85$	1.19 ± 0.01
^{12}C	\mathbf{Cu}	3.5 ± 0.75	99.3 ± 2	-1.73 \pm 1.37	0.46 ± 0.01
		3 ± 0.75	101.3 ± 2	-0.40 \pm 1.12	2.12 ± 0.02
		4 ± 0.75	101.3 ± 2	0.11 ± 1.04	2.05 ± 0.02
	\mathbf{Be}	2 ± 0.75	106 ± 2	-0.94 \pm 0.45	1.35 ± 0.01
		3 ± 0.75	106 ± 2	$\textbf{-1.45} \pm 0.82$	0.81 ± 0.01

表 3: 様々な条件での ⁹C 生成と、そのときの *AP*及び β 線収量(Yield)

スチックシンチレーターを $60 \times 60 \times 1$ mmt か ら $80 \times 80 \times 1$ mmt にして実験を行った。これ らの条件ではどれも純度の良い ⁹C ビームの 生成が確認された。例として ¹²C ビームと Be ターゲットによる ⁹C 生成で得られた β線の時 間スペクトルを図 2 に示す。また、表 3 の 種々の条件に対する *AP*, 収量の結果について まとめたものを図 3 に示す。HIMAC の 1 次 ビーム量ではどれも 1 秒間でせいぜい 2 カウ ントという苦しい条件ではあったが、¹²C ビ ームと Be ターゲットによるものが偏極の生 成に成功していると考えられたため、この条 件 4H-SiC での偏極保持の有無を調べた。こ こで図 4 に示すように、今回生成された ⁹C ビ ーム (¹²C 120A MeV, Be 標的) は以前行われた

図2:9C生成で得られる典型的な時間スペクトル

理研での実験 (¹²C 67A MeV, C 標的[2])と比べると、偏極はそれほど変わらずに生成率の高いビー ムが得られていると考えられ、以前よりも効率の良い実験が可能となるであろう。

4H-SiC での測定は、厚さ 365 μm の 4H-SiC 単結晶を用いて行った。また、c 面を静磁場に対し て魔法角に傾け、NMR ではなく一次ビームの標的入射角度を反転させ、偏極が逆向きの °C ビー ムとの β線非対称度を比較することで AP を求めた。このときの AP の時間変化について示したも のを図 5 に示す。ここでは時間の前半には偏極が保持していると考えられ、この物質を用いた °C の Q モーメント測定の可能性が示唆された。

HIMAC での実験では ℃ の収量が非常に少なく、ここでの *Q*モーメント測定は非現実的であった。今後はこの実験で探索した良い条件の ℃ ビームと、電場勾配をもち偏極も保持する物質として有力な 4H-SiC を用いた、より高強度なビーム照射が可能な施設での *Q*モーメント測定実験が望まれる。そして、その先には ℃を用いた炭素の NQR が実現されるであろう。

References

[1] M. Kanazawa, A. Kitagawa, S. Kouda, T. Nishio, M. Torikoshi, K. Noda, T. Murakami, S. Sato, M. Suda, T. Tomitani, T. Kanai, Y. Futami, M. Shinbo, E. Urakabe and Y. Iseki, Nucl. Phys. A **746**, 393c (2004).

[2] K. Matsuta, M. Fukuda, M. Tanigaki, T. Minamisono, Y. Nojiri, M. Mihara, T. Onishi, T. Yamaguchi, A. Harada, M. Sasaki, T. Miyake, S. Fukuda, K. Yoshida, A. Ozawa, T. Kobayashi, I. Tanihata, J. R. Alonso, G. F. Krebs and T. J. M. Symons, Nucl. Phys. A **588**, 153c (1995).

図 3:様々な条件での %C 生成における *AP*と Yield 途中から Pt ストッパーを 45 度傾け、β カウンターの立体角を大きくした。

図4:今回の実験と、RIKENでの実験の比較

図5: ⁹C in 4H-SiC における APの時間変化

(p, n) 逆運動学反応によるスピン偏極 ¹²N 生成機構

Mechanism of Spin Polarization of ¹²N via (p, n) Reaction in Inverse Kinematics

版大理¹、東京都市大²、新潟大研究推進機構³、新潟大理⁴、筑波大数理物質⁵、理研仁科セ⁶、 国際基督教大⁷、高知工科大⁸、量子科学技術研究開発機構⁹ 三原基嗣¹、杉原貴信¹、松多健策¹、福田光順¹、矢口雅貴¹、岩本昴大¹、若林優¹、大野淳一¹、

二床盡嗣、衫床員信、松多健床、福田九順、天口雅員、名本卯八、名林陵、八野停一、 上庄康斗¹、森田祐介¹、田中聖臣¹、大西康介¹、八木翔一¹、南園忠則¹、西村大樹²、泉川卓司³、 大坪隆⁴、長島正幸⁴、酒井拓⁴、阿部康介⁴、小沢顕⁵、丹羽崇博⁵、阿部康志⁶、石橋陽子⁶、 長友傑⁶、久保謙也⁷、百田佐多生⁸、北川敦志⁹、佐藤眞二⁹、金沢光隆⁹、取越正己⁹

M. Mihara¹, T. Sugihara¹, K. Matsuta¹, M. Fukuda¹, M. Yaguchi¹, K. Iwamoto¹, M. Wakabayashi¹, J. Ohno¹, Y. Kamisho¹, Y. Morita¹, M. Tanaka¹, K. Ohnishi¹, S. Yagi¹, T. Minaisono¹, D. Nishimura², T. Izumikawa³, T. Ohtsubo⁴, T. Ohtsubo⁴, M. Nagashima⁴, T. Sakai⁴, K. Abe⁴, A. Ozawa⁵, T. Niwa⁵, Y. Abe⁶, Y. Ishibashi⁶, T. Nagatomo⁶, K.M. Kubo⁷, S. Momota⁸, A. Kitagawa⁹, S. Sato⁹, M. Kanazawa⁹, and M. Torikoshi⁹ ¹Department of Physics, Osaka University ²Tokyo City University ³Institute for Research Promotion, Niigata University ⁴Department of Physics, Niigata University ⁵University of Tsukuba, Institute of Physics ⁶RIKEN Nishina Center for Accelerator-Based Science ⁷International Christian University

⁸Kochi University of Technology

⁹National Institute for Quantum and Radiological Science and Technology (QST)

1. Introduction

ベータ線検出核磁気共鳴 (B-NMR) 法は、不安定核の電磁気モーメント測定を通した原子核構造研究 や、超微細相互作用を通した物質科学研究等に用いられてきた。核子当たり数十 MeV の重イオン核反応 を利用することにより、高いスピン偏極度をもつ不安定核ビームが得られることが Asahi らによって明らかに され [1]、それ以降世界の主要な重イオン加速器施設では、偏極不安定核ビームを用いて β-NMR 法によ る核モーメント測定や核物性研究が行われている。これまでに偏極ビーム生成に利用されてきた重イオン 核反応は、主には入射核の表面付近の核子が剥ぎ取られる入射核破砕反応 [1] や、標的核から核子を捕 らえる核子ピックアップ反応 [2] である。これらの核反応における偏極機構としては、核子が剥ぎ取られた り、あるいは核子を捕獲したりする際にトルクが生じ、従って生成核に軌道角運動量が持ち込まれること、そ して入射核と標的核間の相互作用(核力やクーロン力)により生じる偏向により角運動量の向きに偏りが生 じることで理解されている。一方、我々は陽子標的による荷電交換反応 p (12C, 12N) n により、12C ビームを 用いて 短寿命核 ¹²N (I^r = 1⁺, T_{1/2} = 11 ms) の核スピンが約 10% も偏極することを見いだした [3]。この反 応による偏極機構は上記とは異なり、核力の基本性質のひとつであるスピンー軌道相互作用により説明で きると考えており、逆運動学反応である (p, n) 反応で考えることが理解を助ける。また2体反応により入射核 破砕反応などに比べエネルギー幅の狭い偏極不安定核ビームが得られるため、核物性プローブとしても 有用である。我々は最近、この反応を利用して生成したスピン偏極¹²N ビームを用いて、液体の水の中に 打ち込んだ不安定核の β-NMR 観測に初めて成功した [4]。本稿では、以前行った核子当たり 70 MeV の ¹²C ビームを用いた測定に加え、今回新たに核子当たり 120 MeV で測定を行い、微分断面積とスピン偏 極の角度依存性を導出し、結果に対する定性的な解釈を試みた。また、偏極不安定核ビーム生成の観点 から、(p,n) 逆運動学反応の有用性についても考察した。

2. Experimental

実験方法については以前の報告 [3] で概要を述べている。放射線医学総合研究所 (NIRS) の HIMAC シンクロトロン加速器から供給される¹²C ビームを、陽子標的として用いるポリエチレン (CH2)』 に入射して ¹²N を生成した。¹²C ビームのエネルギー 70 および 120 MeV/nucleon に対し標的厚さはそれぞれ 1.2 mm および 4.4 mm で、このときの標的中の平均エネルギーはそれぞれ 68.2 および 115.7 MeV/nucleon とな る。生成核¹²Nの角度を選択するために、標的直前に置かれたスウィンガー磁石により¹²Cビームの入射 方向を制御することで角度 θ を決定し、標的下流に設置された二次元の角度スリットにより立体角を制限し た。二次ビームライン SB2 [5] に設置された2台の双極子電磁石 D1, D2 とその中間に置かれたくさび型の Al 減速板 (中心部分の厚さ1 mm)を通過させ、磁気剛性 Bρ とエネルギー損失 δE による粒子の選別を 行った。ビームラインに設置した検出器により time-of-flight (TOF)- ΔE 法により ¹²N を識別し、 θ の関数で 計数することにより微分断面積を測定した。12Nのスピン偏極測定は、12Nビームを SB2 ビームラインの最 終焦点に設置した β-NMR 装置内の Pt 試料中に停止させて行った。 偏極保持および β-NMR 測定のため に、試料位置には偏極に対し平行もしくは反平行となる鉛直上向きに静磁場 B0 = 0.5 T が印加され、上下 に設置した3連のプラスチックシンチレータからなるカウンターテレスコープでβ線を検出した。スピン偏極 した核から放出される β線は非対称な角度分布を示し、Pの方向に対する β線の放出角度を αとすると、 $W(\alpha) = 1 + AP \cos \alpha$ と表される。ここで A は β 線非対称係数で、¹²N の場合 +1 となる。 $\alpha = 0$ および π 方向 に置かれた検出器の β線計数比は、 $r(P) = N(0, P)/N(\pi, P) = G(1 + AP)/(1 - AP)$ と表され、G は検出器 の幾何学的非対称度を表す。NMR により偏極を崩したとき r(0) = G となり、r(P) との比 R =r(P)/r(0)を用いると AP = (R-1)/(R+1) により AP が求まる。偏極を崩すためには、高周波 (RF) コ イルを用いて、試料位置に RF パルス磁場 B₁ を B₀ に垂直な方向に印加した。ラーモア周波数 v_L = 1742 kHz を中心に、周波数変調 (FM) ±5 kHz、掃印時間約 1 ms の B₁ をビームパルスと同期して 印加した。ビームパルスは時間幅約20ms、3.3 s 周期で供給されるのに対し、サイクルの2回に1 回はビーム開始後 50 ms 間 B₁ を印加した。

3. Results and Discussion

 $p(^{12}C, ^{12}N) n 反応における ^{12}N 生成微分断面積の結果を Fig. 1 に示す。重心系の角度 <math>\theta_{CM}$ の関数で プロットし、実験室系の角度 θ_{lab} も示した。ポリエチレン標的における C 核の寄与は、炭素標的による測定 を行った結果 $p(^{12}C, ^{12}N) n 反応に対し 1/50 程度であった [3]。Figure 1 では C 核の寄与を差し引いた結$ $果を示している。陽子ビームを用いた逆運動学の <math>^{12}C(p, n) ^{12}N$ 反応による測定が過去に行われており、今 回と近いエネルギーでの測定結果

も同様に示した。今回の E[12C] = 68.2 MeV/nucleon の結果は、 Goulding らによる $E_p = 61.8$ MeV の結果 [6] とは角度分布の形状は 類似しているが、断面積の絶対値 は我々の値よりも約4倍大きな値を 示している。 $E^{12}C$] = 115.7 MeV/nucleon の結果は $E_p = 120$ MeVのRapaportら[7]の結果と比 較的良い一致を示し、Goulding ら [6] は我々より約 1.5 倍大きな値を 示している。我々の結果に関して は、ビーム強度の絶対値の信頼性 や、SB2 における¹²N の輸送効率 について再評価する必要があると 考えている。

Fig. 1. Differential cross section of the charge exchange reaction $p(^{12}C, ^{12}N)$ n. Previous data for (p, n) reaction are also shown.

つぎに ¹²N スピン偏極 $P[^{12}N]$ の角度依存性の結果を Fig. 2 に示す。ここで $P[^{12}N]$ の符号は、 ¹²C ビームと ¹²N の運動量をそれぞれ k_i, k_f としたとき、 $k_i \times k_f$ の 方向を正と定義している。Pt 試料中において ¹²N の スピン偏極が 100% 保持するという仮定のもとに、 β線検出器の有限の立体角により非対称度 AP が薄ま る効果を補正して $P[^{12}N]$ の値を求めた。 $E[^{12}C] = 68.2$ MeV/nucleon においては、 $\theta_{CM} = 15^{\circ}$ ($\theta_{lab} = 1^{\circ}$) におい て $P[^{12}N]$ は極大値約+10% を示し、 $\theta_{CM} = 35^{\circ}$ 付近で符 号が反転した。これに対し $E[^{12}C] = 115.7$ MeV/nucleon では、 $P[^{12}N]$ は極大でもせいぜい +2% であった。

 $P[^{12}N]$ の結果について、Fig. 3-a)に示すような ^{12}C の 静止系すなわち逆運動学である (p, n)反応で考える。今 回の実験で示された、 ^{12}N のスピン偏極が正となる条件 は、逆運動学においては入射陽子に対して中性子が左 前方に放出された場合に対応する。このとき中性子のス ピン偏極は、 $P_n = -P[^{12}N]$ の関係から符号は負となる。 ここで ^{12}C (p, n) ^{12}N 反応においては、 ^{12}N の励起準位 はすべて非束縛状態でありただちに粒子を放出して別 の核に変わってしまうことから、二次ビームとして検出さ れた ^{12}N はすべて $I' = 1^+$ の基底状態への直接遷移、す

Fig. 2. Spin polarization of ${}^{12}N$ produced via the charge exchange reaction p (${}^{12}C$, ${}^{12}N$) n.

なわち ¹²C ($I^{r} = 0^{+}$) → ¹²N ($I^{r} = 1^{+}$) ガモフ・テラー (GT) 遷移となる。従ってここではこの過程のみ考えれば よい。過去に行われた ¹²C (p, n) ¹²N GT 遷移における 0° 方向での偏極移行実験では、ビーム方向に対し 垂直にスピン偏極した入射陽子は、広いエネルギー範囲に亘りおよそ $P_{n} = -0.25 P_{p}$ の関係を満たし、従 って前方では入射陽子とは反対向きにスピン偏極した中性子を放出することが示されている [8]。このこと は、今回の左前方に放出された中性子スピンが下向きに偏極するという結果に対し、スピン上向きの陽子 が左前方への中性子放出により大きく寄与し、逆にスピン下向きの陽子は右前方への寄与が大きくなるこ とを示唆している。ここで、入射陽子が ¹²C 標的核近傍で感じる核力ポテンシャル $V(r) = -V_{0}(r) - v(r) l \cdot s$ の

影響について考えてみる。第一項は中心 力、第二項は LS 力と呼ばれるスピン-軌 道相互作用によるポテンシャルで、Fig. 3b) に示すように陽子スピンが上向きの場合 は、標的の右側を通ると LS 力は引力とし て働き、左側では斥力として働くので、上 向きスピンは左方向に、逆に下向きの場合 は右方向に偏向し易くなると考えられ、こ のことがスピンの向きによって左右非対称 な角度分布を生む原因となる。以上のよう な描像により、今回の前方での結果が定性 的に説明できた。角度が大きくなると偏極 が反転することについては、標的の左側と 右側の経路における干渉の効果によるも のと思われる。微分断面積の形状は干渉 パターンを反映しており、LS 力によってや はり左右非対称になると考えられ、その結 果左右の形状の違いがスピン偏極に如実 に表れているものと考えられる。

Fig. 3. a) Image of a ${}^{12}C$ (p, n) ${}^{12}N$ reaction in a rest frame of ${}^{12}C$. b) Trajectory image of a proton with up spin due to spin-orbit interaction between the proton and a ${}^{12}C$ nucleus.

最後に、スピン偏極 ¹²N ビームを β-NMR 測定に利用する場合の測定効率について考察する。ここで指 標となるのは、スピン偏極 P と収量 Y より Y × P² で表される figure of merit である。今回調べた p (¹²C, ¹²N) n 反応については、¹²C ビームのエネルギーは高い偏極が得られた核子当たり 70 MeV を用いる方が 120 MeV よりも圧倒的に有利である。HIMAC で得られる ¹²C の最大ビーム強度 1.8 × 10⁹ particles per second (pps) を用いて、実験室系の角度を 1° ± 0.5° とした場合、今回用いた標的厚さで得られた β 線の収量は約 60 cps であった。一方、以前調査した入射核破砕反応 ¹⁴N + Be → ¹²N + X においては、適切な角度と運 動量の選択により 25% ものスピン偏極が得られる [3] が、¹⁴N の最大ビーム強度 1.5 × 10⁹ pps に対し β 線 の収量は約 10 cps であった。両者の figure of merit を比較するとほぼ等しくなり、一定時間の β-NMR 測 定で到達する統計精度については変わらない。ただし、¹²N ビームエネルギーの拡がりは、p (¹²C, ¹²N) n 反応では標的厚のみで決まり全幅で約 3% となるのに対し、¹⁴N の飛程の拡がりに換算するとそれぞれ約 40 mg/cm² および 120 mg/cm² であり、p (¹²C, ¹²N) n 反応を用いた方がより薄い試料に対応可能となる。

以上より、逆運動学による (p, n) 荷電交換反応において、LS 力による偏極機構によりエネルギーの揃っ たスピン偏極不安定核ビームが得られることを示した。この反応で生成可能な短寿命核は多数存在するため、様々な元素種の β-NMR プローブ核ビームを提供する新たな手法となることにも期待したい。

References:

- [1] K. Asahi et al., Phys. Lett. B 251, 488 (1990).
- [2] D.E. Groth et al., Phys. Rev. Lett. 90, 202502 (2003).
- [3] M. Mihara et al., Hyperfine Interactions 220, 83 (2013).
- [4] T. Sugihara et al., Hyperfine Interactions 238, 20 (2017).
- [5] M. Kanazawa, et al., Nucl. Phys. A746, 393c (2004).
- [6] C.A. Goulding et al., Nucl. Phys. A331, 29 (1979).
- [7] J. Rapaport et al., Phys. Rev. C 24, 335 (1981).
- [8] H. Sakai et al., Nucl. Phys. A579, 45 (1994).

スピン 1/2 のベータ NMR プローブ核¹⁵C,¹⁷N の開発

Development of Spin 1/2 Beta-NMR Probe Nuclei ¹⁵C, ¹⁷N

阪大院理¹、新潟大研究推進機構²、新潟大理³、高知工科大⁴、量子科学技術研究開発機構⁵ 三原基嗣¹、南園忠則¹、杉原貴信¹、大西康介¹、八木翔一¹、田中聖臣¹、福田光順¹、松多健策¹、 泉川卓司²、本間彰³、大坪隆³、百田佐多生⁴、北川敦志⁵、佐藤眞二⁵

M. Mihara¹, T. Minamisono¹, T. Sugihara¹, K. Ohnishi¹, S. Yagi¹, M. Tanaka¹, M. Fukuda¹, K. Matsuta¹, T. Izumikawa², A. Honma³, T. Ohtsubo³, S.Momota⁴, A. Kitagawa⁵, and S. Sato⁴

¹Department of Physics, Osaka University

²Institute for Research Promotion, Niigata University

³Department of Physics, Niigata University

⁴Kochi University of Technology

⁵National Institute for Quantum and Radiological Science and Technology (QST)

1. Introduction

我々は最近、液体の水に打ち込んだ短寿命核 ¹²N (*I* = 1, *T*_{1/2} = 11 ms)の核磁気共鳴 (NMR) スペクトル 測定を行った [1]。核子当たり数十 MeV のスピン偏極 ¹²N ビームを生成して大気圧下に置かれた容器内 の水試料中にビームを打ち込み、ベータ線検出核磁気共鳴 (β-NMR) 法を用いることにより、水中に停止 した ¹²N の NMR 観測に成功した。これにより、液体中に入射したイオンが形成する化学種探索といった、 化学や生物学分野とも関連した新たな研究に発展する可能性が拡がった。従来の安定核の液体 NMR 法 で知られているように、化学シフト測定は分子構造解析等に決定的な役割を果たしていることから、β-NMR についても ppm オーダーあるいはそれ以下での精密化学シフト測定が実現すれば、入射イオンが形成し た化学種同定に適用可能となる。一般的に液体 NMR においては運動による先鋭化のため狭い線幅のス ペクトルが得られるが、¹²N の場合は同様に核スピン *I* = 1 である ¹⁴N の NMR で見られるように、四重極相 互作用による線幅の拡がりやスピンー格子緩和時間 T_1 が短くなること [2] が精密化学シフト測定の妨げと なり得る。安定核においては *I* = 1/2 の ¹H, ¹³C, ¹⁵N の精密 NMR が分子構造解析に活用されていることか ら、我々は *I* = 1/2 の β-NMR プローブ核による精密化学シフト測定を目指した研究を開始した。そのため に、重イオン核反応による短寿命核 ¹⁵C (*I* = 1/2, $T_{1/2}$ = 2.449 s) および ¹⁷N (*I* = 1/2, $T_{1/2}$ = 4.173 s) のスピン 偏極ビーム生成テストを行った。¹⁷N については液体の水 (H₂O) およびニトロメタン (CH₃NO₂) 中の β-NMR スペクトル測定も行い、その結果 ¹⁷N の核磁気モーメントの精度を上げることに成功した。

2. Experimental

実験は放射線医学総合研究所 (NIRS) の HIMAC シンクロトロン加速器施設で行った。¹⁵C および ¹⁷N はそれぞれ核子当たり 70 MeV の ¹⁵N および ¹⁸O ビームを用いて、荷電交換反応 ¹⁵N + Be → ¹⁵C + X および入射核破砕反応 ¹⁸O + Be → ¹⁷N + X により生成した。ビーム強度はそれぞれ 1.5 × 10⁹ particles per second (pps) および 1.1 × 10⁹ pps であった。標的にはそれぞれ厚さ 1 mm および 2 mm の Be を用いた。目的の核種を分離するために、二次ビームライン SB2 [3] に設置された2台の双極子電磁石 D1, D2 とその中間に置かれたくさび型の Al 減速板 (中心部分の厚さ 3.5 mm) を通過させ、磁気剛性 *Bp* とエネルギー損失 δE による粒子の選別を行った。¹⁵C, ¹⁷N の核スピン偏極を生じさせるために、標的直前のスウィンガー磁石と D1 により、それぞれ入射ビームに対する角度 θ と運動量 p を制御し、偏極 $P \in \theta$ および p の関数で測定した。P の測定は β -NMR 法により行った。¹⁵C, ¹⁷N 二次ビームを 0.1 mm 厚の Al 真空窓から大気中に取り出し減速板を通過させた後、Al 窓から約 40 cm 下流に位置するグラファイト試料に入射させた。2枚のくさび型のアクリル板からなる減速板は厚さ可変で、植え込み深さの微調により試料内部に確実に停止させることが可能である [1]。偏極保持および β -NMR 測定のために、試料位置には偏極に対し平行もしくは反平行となる鉛直上向きに静磁場 B_0 が印加されている。3連のプラスチックシンチレータからな

るカウンターテレスコープを試料の上下に設置し、試料 中に停止した ¹⁵C, ¹⁷N から放出される β 線の検出に用 いた。

スピン偏極した核から放出される β 線は非対称な角度 分布を示し、P の方向に対する β 線の放出角度を α と すると、 $W(\alpha) = 1 + AP \cos \alpha$ と表される。ここで A は β 線 非対称係数で、¹⁵C, ¹⁷N の場合それぞれ約 –0.4 および 約 +0.25 となる。従って、上下即ち $\alpha = 0$ および π 方向

Table 1. Summary of β -NMR conditions for the measurement of spin polarization for ¹⁵C and ¹⁷N.

	¹⁵ C	¹⁷ N	
$B_0(T)$	0.25	0.5	
$B_1 (\mathrm{mT})$	0.5	1.3	
$v_{\rm L}$ (kHz)	6527	2786	
⊿v (kHz)	200	200	
$\Delta t (\mathrm{ms})$	10	40	

に置かれた検出器の β 線計数比は、 $AP \ll 1$ の場合 $r(P) = N(0, P)/N(\pi, P) = G(1 + 2AP)$ と表され Pに 比例する量である β 線非対称度 AP を反映する。ここで G は検出器の幾何学的非対称度を表す。 NMR により偏極を反転させ、このときの計数比 r(-P) との比をとることにより G が打ち消され、 r(P)/r(-P) - 1 = 4AP により AP が得られる。偏極反転には、速い断熱過程 (adiabatic fast passage; AFP) を利用した。高周波 (RF) コイルを用いて、試料位置に周波数変調 (FM) をかけたパルス RF 磁場 $B_1 \in B_0$ に垂直な方向に印加する。パルス幅 Δt の間に、ラーモア周波数 v_L (= $yB_0/2\pi$) を中心 に $v_L - \Delta v/2$ から $v_L + \Delta v/2$ まで周波数を掃引したとき、AFP 条件 (yB_1)² $\gg 2\pi \Delta v/\Delta t$ を満たせば偏極 が反転する。P 測定時における β-NMR の条件を Table 1 にまとめた。今回使用した ¹⁵N および ¹⁸O ビー ムは、時間幅約 100 ms のパルスビームで、周期は ¹⁵C, ¹⁷N の半減期を考慮してそれぞれ 3.3 s および 6.6 s としてビーム照射- β 線計数のサイクルを繰り返した。サイクルの 2 回に 1 回は偏極反転のため にビーム照射直後に RF を印加した。

上記偏極ビーム生成テストで得られた ¹⁷N を用いて、液体の水および無溶媒ニトロメタン中の β -NMR スペクトル測定を行った。液体試料はポリエチレンの袋に密閉した状態で試料ホルダーに取り付け た。磁気モーメント/化学シフト測定は高磁場で行う方が有利であり、我々の装置で得られる最大の磁場 $B_0 = 1 \text{ T}$ で測定を行った。試料位置の静磁場をモニターするために、試料から約 6 cm 離れた位置にプロ トン NMR プローブを設置し磁場の値が常に一定になるよう調整した。試料位置での B_0 の値はオフライン で測定した磁場分布により較正した。

3. Results and discussion

3.1 Production of polarized ¹⁵C and ¹⁷N beam

重イオン核反応により生成・分離した ¹⁵C および ¹⁷N 二次ビーム が試料に入射後放出された β 線計数の時間スペクトルを Fig. 1 に示 す。時間スペクトルに指数関数を当てはめて得られた半減期はいずれも 既知の値と一致しており、高純度の ¹⁵C, ¹⁷N ビームが生成出来たことを示 している。 β 線収量は、下記に述べる偏極生成のために角度や運動量を 絞り最適化した場合、¹⁵C, ¹⁷N についてそれぞれ上下カウンターの計 数率の合計で約7 cps および 500 cps であった。

Figure 2 に ¹⁵C の運動量分布と角度分布、得られた非対称度 AP と θ の関係、および AP の時間変化を示す。運動量分布では、入射ビ ームと等しい速度を持つ ¹⁵C に対する相対運動量が示されている。 陽子ピックアップ過程を伴う ¹⁵N + Be → ¹⁵C + X 反応においては、より減 速した場合に大きな角運動量が持ち込まれることを期待して運動量窓 $p/p_0 = (97 \pm 2)$ % を選択した。そのときの角度分布を測定し、収量が $\theta = 0^\circ$ の半分程度になる $\theta = (2 \pm 0.75)^\circ$ と (2.5 ± 0.75)° で偏極測定を行っ た結果、有意な偏極が観測された。A の符号が負であることから P は正であり、この符号はピックアップ過程における偏極機構で説明 がつく。ここで P の符号は、入射ビームと生成核の運動量をそれぞ れ k_i , k_f としたとき、 $k_i \times k_f$ の方向を正と定義している。 2 点のデ ータを足し合わせて、AP の時間変化をプロットして指数関数で

Fig. 1. Typical β -ray time spectra for ¹⁵C and ¹⁷N.

Fig. 2. a) Momentum distribution, b) angular distribution, and c) β -ray asymmetry of ¹⁵C produced through the charge exchange reaction, Be(¹⁵N, ¹⁵C)X, using a ¹⁵N beam with an energy of 70 MeV/nucleon. d) β -ray asymmetry of ¹⁵C in graphite plotted as a function of time.

Fig. 3. a) Momentum distribution, b) angular distribution, and c),d) β -ray asymmetry of ¹⁷N produced through the projectile fragmentation, Be(¹⁸O, ¹⁷N)X, using a ¹⁸O beam with an energy of 70 MeV/nucleon.

fitting した結果、グラファイト中 ¹⁵C の室温におけるスピン-格子緩和時間 $T_1 = (2.1 + 3.4/_{-1.3})$ s が得られた。また、t = 0 における非対称度 $AP_0 = -(2.6 \pm 0.8)$ % と求まった。

¹⁷N の結果を Fig. 3 に示す。運動量分布のピークに対し高運動量側を選択することにより、入射 核破砕反応から予想される負の偏極が観測された。 $p/p_0 = (102.5 \pm 2)$ %, $\theta = (1.5 \pm 0.75)$ °のときの *AP* の時間変化を Fig. 4 に示す。室温のグラファイト中において $T_1 = (5.9^{+4.1}/_{-1.7})$ s が得られた。ま た、H₂O と CH₃NO₂ についても測定した結果、観測時間窓の範囲では緩和していないように見え る。fitting により得られた T_1 の下限値はそれぞれ 14 s および 12 s であった。以前測定した H₂O 中 ¹²N の T_1 は数十 ms [4] であり、四重極相互作用が働かない ¹⁷N ではこれに比べて非常に長くな ることが示された。初期偏極は CH₃NO₂ が最も大きく $AP_0 = -(1.5 \pm 0.4)$ % であった。

3.2 NMR spectra of ¹⁷N in H₂O and CH₃NO₂

液体試料 H₂O および CH₃NO₂中の¹⁷Nの β-NMR スペクトルを Fig. 5 に 示す。 $B_0 = 1$ T で AFP 法に よる測定を行った。振幅変 調 (AM) をかけた RF パル ス磁場を適用し、FM 幅 Δv は H₂O, CH₃NO₂ について それぞれ 2.5 kHz および 1 kHz、 B_1 は 0.13 mT および 0.09 mT であった。H₂O 中 のスペクトルは、線幅が FM

Fig. 4. β -ray asymmetry of ${}^{17}N$ in graphite, H₂O and CH₃NO₂ plotted as a function of time.
幅に比べて広いように見える。考えられる要因としては、運動による先鋭化が不十分なため核双極子磁場による拡がりが生じる為、または化学シフトの異なる複数の成分が存在する為、あるいはその両方ということが考え得られる。FM幅を狭め、より細かい周波数マッピングによりスペクトルを測定し、されにその温度依存性を調べることにより今後詳細が明らかになってくるものと思われる。CH3NO2中のスペクトルの線幅はFM幅程度であった。

今回得られた H₂O 中 ¹⁷N の β-NMR スペクトルと、以前 の ¹²N の β-NMR の結果、および N 核の化学シフトのデー タを用いることにより、物質による化学シフトの違いを全て実 験値で補正し、安定核 ¹⁴N を参照値として ¹²N および ¹⁷N

Fig. 5. β -NMR spectra of ¹⁷N in H₂O and CH₃NO₂.

の磁気モーメントが求まった。以下にその詳細について述べる。H2O 中¹²N [1] と¹⁷N の中心周波数から、磁気モーメントの比

$$\left|\frac{\mu^{[1^{7}N]}}{\mu^{[1^{2}N]}}\right| = \frac{(1/2)\nu^{[1^{7}N \text{ in } H_{2}O]}/\nu[C_{5}^{1}H_{8}]}{\nu^{[1^{2}N \text{ in } H_{2}O]}/\nu[C_{5}^{1}H_{8}]}$$
(1)

が得られる。ここで $v[C_5^1H_8]$ は、プロトン NMR プローブ (Metrolab PT2025) で測定した H₂O 試料位置に おける共鳴周波数で、プローブに使用されているイソプレンゴム (C₅H₈) 試料中のプロトンが感じる磁場を 反映している。 $v[^{17}N$ in H₂O] の値は、Fig. 5 のスペクトルについて、1成分の Gaussian または Lorentzian を 仮定した場合の中心周波数、あるいは2成分を仮定した場合のスペクトルの重心など、いくつかの仮定の 下に導出した値の全範囲を誤差に含めて求め、 $|\mu[^{17}N]/\mu[^{12}N]| = 0.77379(16)$ が得られた。 ^{14}N の磁気モ ーメントの最も精密な値は、HNO₃中の ^{14}N と H₂O 中プロトンの NMR 周波数比 $v[H^{14}NO_3]/v[^{1}H_2O] =$ 0.07226261(1) [5] より与えられている。この値との比較により ^{12}N と ^{14}N の磁気モーメントの比を以下のよう に求めた。

$$\frac{\left| \frac{\mu^{[1^2N]}}{\mu^{[1^4N]}} \right| \simeq \frac{\nu^{[1^2N \text{ in Pt}]/\nu[C_5^{-1}H_8]}}{\nu[H^{14}NO_3]/\nu[^{-1}H_2O]} \times \left[1 - \left(\delta^{[1^2N \text{ in Pt}]} - \delta[H^{14}NO_3] \right) - \left(\delta[C_5^{-1}H_8] - \delta[^{-1}H_2O] \right) \right]$$
(2)

ここで δ はいわゆる化学シフトで、δ = (v – v_{ref})/v_{ref} により定義され、参照試料に対する共鳴周波数のシフト を表す。Pt 中 ¹²N の β-NMR より、v[¹²N in Pt]/v[C₅¹H₈] = 0.0818334(9) が得られた。プロトン NMR プロー ブの周波数を H₂O の値に換算するための化学シフト補正 δ[C₅¹H₈] –δ[¹H₂O] = 3ppm が Metrolab のテク ニカルノート [6] に示されている。δ[H¹⁴NO₃] は液体アンモニアを参照試料とした場合 376ppm [2] である。 δ[¹²N in Pt] は、以前の ¹²N の β-NMR で得られた h-BN に対するシフト δ[¹²N in Pt] –δ[¹²N in h-BN] = (5.8 ± 2.1) × 10²ppm [6] と、¹⁴N NMR による δ[h-B¹⁴N] = (102 ± 3)ppm [8,9] により求まり、 δ [¹²N in Pt] = (6.8 ± 2.1) × 10²ppm となる。ここで、h-BN 中 ¹²N の β-NMR においては、打ち込まれた ¹²N が N 置換位置を占 めることが四重極相互作用の測定で示されている [10]。以上により μ [¹²N] = 1.13210(23) が得られ た。反磁場補正を施した μ [¹⁴N] = +0.40376100(6) μ _N [5,11] を用いて、 μ [¹²N] = +0.4571(1) μ _N, μ [¹⁷N]] = 0.3537(1) μ _N と決定した。¹⁷N については、GANIL で測定された最新値 μ [¹⁷N]] = 0.3551(4) μ _N [12] よりも 高い精度で決定することができた。

3.3 Chemical shifts of N in H₂O and CH₃NO₂

h-BN 試料中における ¹²N の β-NMR 測定結果を用いて安定核の NMR と繋げることにより、N 同位体に ついては、外部から試料中に導入した不安定核の化学シフトが求められる。以前の測定により、 δ [¹²N in H₂O] – δ [¹²N in Pt] = –(3.6 ± 0.5) × 10²ppm [1] が得られている。また今回の測定からは、 δ [¹⁷N in

 CH_3NO_2] - δ [¹⁷N in H₂O] = -(1.5 ± 2.0) × 10²ppm が得られた。これより、 δ [N in H₂O] = (3.2 ± 2.2) × 10²ppm, δ [N in CH₃NO₂] = (1.7 ± 3.0) × 10²ppm となった。

4 Summary

核スピン 1/2 の短寿命核 ¹⁵C, ¹⁷N について、HIMAC で重イオン核反応によりスピン偏極ビームを生成 し、β-NMR 測定を行った。試料中に停止させて測定した結果、β線非対称度 *AP* の絶対値として ¹⁵C につ いて 2–3%, ¹⁷N については 1.5% 程度が得られた。収量については、β線計数率が ¹⁵C の場合約 7 cps と やや少ないが、β-NMR による物質科学研究 には利用可能である。¹⁷N は約 500 cps であり、非常に有望 であることが示された。¹⁷N については液体 H₂O および CH₃NO₂ 試料中の β-NMR 測定を行い、四重極 相互作用が働かないため半減期に比べて T_1 が十分に長いことが示された。また、NMR スペクトルを測定 し、¹⁷N の磁気モーメントの精度を向上させることに成功した。β-NMR などによる不安定核の磁気モーメン ト測定においては、物質中の内部場の情報が不明な場合は精密決定の際に大きな問題となるが、以前行 われた h-BN 中 ¹²N の β-NMR 測定の結果を用いて化学シフト求めることにより、安定核 ¹⁴N の磁気モーメ ントとの比を正確に求めることができた。しかし、化学シフトの基準として用いるにはまだ十分な精度が得ら れていないため、基準試料の探索を今後継続する予定である。

References:

[1] T. Sugihara et al., Hyperfine Interactions 238, 20 (2017).

[2] G.C. Levy and R.L. "Lichter, Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy", John Wiley & Sons, Inc., New York (1979).

- [3] M. Kanazawa, et al., Nucl. Phys. A746, 393c (2004).
- [4] T. Sugihara et al., KURRI-EKR-18, 29 (2017).
- [5] G.H. Fuller, J. Phys. Chem. Ref. Data 5, 835 (1976).
- [6] P. Keller, "Values of Gyromagnetic Ratios", (2017) (https://www.metrolab.com/downloads/).
- [7] K. Matsuta et al., Hyperfine Interactions 120-121, 719 (1999).
- [8] G. Jeschke and M. Jansen, Angew. Chem. Int. Ed. 37, 1282 (1998).
- [9] P. Bertani et al., Solid State Nucl. Mag. Res. 61-62, 15 (2014).
- [10] T. Minamisono et al., Phys. Lett. B 420, 31 (1998).
- [11] N.J. Stone, Atomic Data and Nuclear Data Tables 90, 75 (2005).
- [12] M. De Rydt et al., Phys. Rev. C 80, 037306 (2009).

ミュオンスピン緩和法によるアルミ合金中の原子空孔研究

µSR Study of Atomic Vacancies in Al Alloys

富山大院理工¹、理研仁科セ²、茨城大工³、東工大院⁴、RAL⁵、NTNU⁶、SINTEF⁷
 西村克彦¹、松田健二¹、畠山大智¹、布村紀男¹、松崎禎市郎²、渡邊功雄²、伊藤吾朗³、
 橋本明³、里達雄⁴、フランシス プラット⁵、ランディ ホルメシュタット⁶、
 シグード ウェナー⁷、カリン マリオアラ⁷

K. Nishimura¹, K. Matsuda¹, D. Hatakeyama¹, N. Nunomura¹, T. Matsizaki², I. Watanabe², G. Itoh³, A. Hashimoto³, T. Sato⁴, Francis Pratt⁵, Randi Holmestad⁶, Sigurd Wenner⁶,

and Calin Marioara⁷

¹Graduate School of Science and Engineering, University of Toyama

²Advanced Meson Science Laboratory, RIKEN

³Faculty of Engineering, Ibaraki University

⁴Graduate School of Science and Engineering, Tokyo Institute of Technology

⁵ISIS Facility, Rutherford Appleton Laboratory

⁶Department of Physics, Norwegian University of Science and Technology

⁷Materials and Chemistry, SINTEF

<u>1. はじめに</u>

世界の自動車燃費基準は今後ますます厳しくなる。環境負荷低減のため輸送機関の軽量化は喫緊の課題である。自動車産業においてエネルギー効率を向上させ、かつ CO₂等の排気ガスを低減させるためにアルミニウム合金等の軽量素材を利用して車体の軽量化を図る動きがある。特に 6000 系AI-Mg-Si 合金は加工性と比強度が優れており有力な候補になっている。電子顕微鏡やアトムプローブ等の最新の分析機器を利用した微視的組織研究が産学官で活発に行われている[1-5]。AI-Mg-Si 合金の機械的硬さは、人工時効温度と時間と添加元素の濃度に依存する。AI-1.6%Mg₂Si 合金は、200°Cで熱処理すると3時間ほどで硬さが最高になる[3]。この合金の機械的・物理的性質は原子空孔(v)と溶質原子で構成される Mg-Si-v クラスタに支配されると考えられているが、それらを定量的に解析する有効な手法は少みあたらない。そこでこの研究では、ミュオンスピン緩和法を応用することを目的とした。

2. 実験

ミュオンスピン緩和実験は、Rutherford-Appleton 研究所の RIKEN-RAL ミュオン施設で行った。 陽電子の検出にはポート2の ARGUS 検出器を利用した。測定温度範囲は 20K から 300K まで、試 料温度を昇温しながら、20K ごとに緩和スペクトルデータを収集した。1つの温度定点における陽 電子観測計数を、20-60 million events にセットした。ここで報告する実験試料は、純度 99.99%の純 Al とそれに 1.07%の Mg と 0.53%の Si を添加した Al-1.6% Mg₂Si 合金である。Al-1.6% Mg₂Si 試料は、 575℃で 1 時間加熱し、氷水で焼き入れした。その後直ちに温度 100℃で 1000 分間、熱処理した試料 のデータを 1.6-100C と表記する。焼き入れ直後に液体ヘリウムを使って 20K に冷却した試料のデ ータを 1.6-AQ と表記する。99.99% Al のデータ(base Al)は、不純物や格子欠陥によるバックグラン ドを評価するために測定した。実験手順や解析方法については、文献を参照願いたい[7-9]。

3. 結果と考察

ミュオンスピン緩和は、質量数 27 のアルミニウム原子核(²⁷Al:自然存在率~100%、核スピン =5/2)の核磁気モーメントとミュオンスピン磁気モーメントが相互作用して生じる。Mg と Si の核 磁気モーメントは小さく、濃度も低いので、この試料ではスピン緩和への寄与を無視できる。スピ ン緩和が起こるには、ミュオンがある格子サイトにトラップされる必要がある。動き回るミュオン は、いわゆる motional narrowing 効果で、スピン緩和を起こさないと仮定する。Fig.1 は、1.6-100C と 1.6-AQ 試料で観測したゼロ磁場ミュオンスピン緩和スペクトルである。測定温度 220K (Fig. 1(a)) では、1.6-100C の緩和が 1.6-AQ の緩和より速い。逆に、300K (Fig. 1(b))では 1.6-AQ が速くなって いる。ミュオンを主としてトラップするサイトの密度と電気的束縛エネルギーが変化している。

実験で観測した緩和スペクトルを Monte-Carlo シミュレーションで解析した[7]。最適化パラメー タは、ミュオンに作用する双極子磁場幅 Δ (平均値はゼロ)、トラップ率 vt、デトラップ率 vd、初 期偏極率 P₀の4つである。Fig.2はトラップ率の解析結果である。99.99%Alのトラップ率を差し引 いている。トラップ率は、ミュオンがトラップされるまでの平均時間の逆数であり、トラップ位置 の密度と電気的束縛エネルギーに依存する。両試料ともに、40K 付近では大きく、120K 付近で極 小値をとることがわかる。この現象は、ミュオンが固溶している Mg や Si が作る浅いポテンシャル に低温 (40K 付近) ではトラップされが、温度が上昇するにつれて熱的励起により再び拡散してい るとして理解できる。120K から 300K の間で、トラップ率が極大を示しているが、1.6-100C と 1.6-AQ 試料で差異が見られる。Fig.3に2つの試料のトラップ率の差分を示した。室温付近で 1.6-AQ 試料 のトラップ率が大きいのは、過飽和に残存している原子空孔によるトラップ効果と考えられる。 200K 付近で 1.6-100C のトラップ率が大きいのは、Mg-Si-v クラスタがより高密度に有り、ミュオ ンをトラップするためと推察する。

<u>参考文献</u>

[1] K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, A. Kamio, S. Ikeno, J. Materials Science 35, 179-189, 2000

[2] S. Kim, J. Kim, H. Tezuka, E. Koyashi, T. Sato, Materials Transactions 54, 297-303, 2013

[3] 松田、蒲田、藤井、吉田、里、神尾、池野, 軽金属 47, 493-499, 1997

[4] A. Serizawa, S. Hirosawa, T. Sato, Metall. Mater. Trans. A39, 243-251, 2008.

[5] M. Torsæter, H. S. Hasting, W. Lefebvre, C. D. Marioara, J. C. Walmsley, S. J. Andersen, R. Holmestad, J. Appl. Phys. 108, 073527, 2010

[7] S. Wenner, R. Holmestad, K. Matsuda, K. Nishimura, T. Matsuzaki, D. Tomono, F. L. Pratt, C. D.

Marioara: Phys. Rev. B86, 104201, 2012

[8] S. Wenner, K. Nishimura, K. Matsuda, T. Matsuzaki, D. Tomono, F. L. Pratt, C. D. Marioara, Randi Holmestad, Acta Materialia 61, 6082–6092, 2013

[9] S. Wenner, K. Nishimura, K. Matsuda, T. Matsuzaki, D. Tomono, F. L. Pratt, C. D. Marioara, R. Holmestad, Metall. Mater. Trans. 45A, 5777-5781, 2014

Fig. 1 Zero-field spin relaxation spectra observed at 220 K (left) and 300 K (right) for Al-1.6%Mg₂Si aged at 373 K for 1000 min (triangle) and as quenched (circle).

Fig. 2 (left) Temperature dependences of trapping rates (left) for Al-1.6%Mg₂Si aged at 373 K for 1000 min (triangle) and as quenched (circle).

Fig. 3 (right) The differences of the data points in Fig. 2.

重い電子化合物 SmT₂Al₂₀(T:遷移金属)における Sm 価数と磁性

Sm Valence States and Magnetic Properties in Heavy Fermion Compounds Sm*T*₂Al₂₀ (T: transition metals) Investigated by ¹⁴⁹Sm Synchrotron-Radiation-Based Mössbauer Spectroscopy

高輝度光科学研究センター、電気通信大学¹、東京理科大²、国際基督教大学³、首都大学東京⁴ 筒井 智嗣、中村 仁¹、小林 義男¹、天笠 翔太²、山田 康洋²、久保 謙哉³、 水牧 仁一朗、依田 芳卓、山田 瑛⁴、東中 隆二⁴、松田 達磨⁴、青木 勇二⁴

S. Tsutsui, J. Nakamura¹, Y. Kobayashi¹, S. Amagasa², Y. Yamada², M. K. Kubo³,

M. Mizumaki, Y. Yoda, A. Yamada⁴, R. Higashinaka⁴, T. D. Matsuda⁴, Y. Aoki⁴

Japan Synchrotron Radiation Research Institute (JASRI), SPring-8

¹ University of Electro-Communication, ² Tokyo University of Science

³ International Christian University, ⁴ Tokyo Metropolitan University

<u>1. はじめに</u>

重い電子的振舞いは、伝導電子の有効質量が電子の静止質量の100倍以上となる現象であり、希土類 やアクチノイドの金属間化合物においてしばしば観測される。従来、この現象は磁気秩序を抑制する近 藤効果を通じて発生する磁性の問題として理解されてきたが、近年の量子臨界現象に関する過去の実験 の理論的検証の進展[1]により重い電子的振舞いは磁性以外の自由度でもその発現が可能となる低温で の残留エントロピーの問題に認識が変わってきた。Sm 金属間化合物では、磁場に鈍感な非従来型の重 い電子化合物として SmOs₄Sb₁₂が発見され[2]、本研究の対象物質 SmT₂Al₂₀(T:遷移金属)も磁場に鈍 感な重い電子化合物として報告された[3]。これらの磁場に鈍感な重い電子的振舞いは、前述の理論を含 めて固体物理における一つの課題である量子臨界性の研究において新たな場を提供することになった。

磁場に鈍感な重い電子化合物の SmOs₄Sb₁₂と SmT₂Al₂₀の共通点は、Sm の価数が基底状態で磁性を示 す 3 価と基底状態で非磁性である 2 価との中間の価数を示すということである。この事実は、価数を PHz オーダーの時間窓で価数を評価することができる X 線吸収分光 (XAS) によって明らかにすること ができた[4,5]。いずれの系においても XAS においては Sm の 2 価と 3 価の成分が観測され、SmOs₄Sb₁₂ と SmT₂Al₂₀ との違いは、XAS で決定された Sm の平均価数が前者では温度変化をするのに対し、後者 は温度変化しないことである。また、SmOs4Sb₁₂の場合には、価数の温度変化が圧力依存性を示すこと から[9]、価数の自由度が重い電子的振舞いと強く相関を持っていることが示唆される。一方、SmT₂Al₂₀ の場合には、XAS のスペクトルは SmOs₄Sb₁₂ と同様に Sm の 2 価と 3 価の成分が観測されているもの の、Sm の平均価数の温度変化が一連の化合物で観測されず[5,7]、XAS の実験結果から価数と重い電子 的振舞いとの相関を議論するに至っていない。

SmT₂Al₂₀の基底状態に関わる物理量は Table 1 のとおりである[3, 7, 8]。低温で観測される磁場に鈍感 な相転移は、核比熱から¹⁴⁹Sm 核位置の内部磁場の存在が示唆され、磁気転移であると考えられる。そ の磁気転移は遷移金属を変えることにより転移温度が変化し、磁気転移温度と¹⁴⁹Sm 核位置の内部磁場

34

に対して電子比熱係数が負の相関があるように見える[3,7]。この実験事実は磁気自由度と重い電子的振 舞いとの関わりを暗示させる。¹⁴⁹Sm 核のメスバウアー効果は共鳴エネルギーが 22.502 keV であり、メ スバウアー効果としては比較的共鳴エネルギーが低い。このため、比較的広い温度範囲でメスバウアー 効果の観測が可能である。また、近年放射光を励起光として横軸をドップラー速度としてメスバウアー・ スペクトルの測定が可能になった [9]。詳細は後述するが、¹⁴⁹Sm 核のメスバウアー効果は MHz オーダ ーの電荷や磁気の揺らぎの観測が可能であるので、本研究では電荷や磁気の揺らぎのプローブとして一 連の SmT₂Al₂₀ (*T*: Ti, V, Cr)の¹⁴⁹Sm 放射光メスバウアー分光を行った。

Compound	Transition temperature	Electronic specific heat coefficient		
	(K)	(mJ / mol K ²)		
SmTi ₂ Al ₂₀	6.5	150		
SmV_2Al_{20}	2.9	720		
$SmCr_2Al_{20}$	1.8	1,000		

Table 1. Physical properties related to the ground states in Sm*T*₂Al₂₀ (*T*: Ti, V and Cr) [3, 7, 8].

2.¹⁴⁹Sm 放射光メスバウアー実験 [9]

¹⁴⁹Sm 放射光メスバウアー分光実験は SPring-8 の BL09XU で行った。SPring-8 の標準アンジュレータ で発生した X 線をビームラインに設置された液体窒素冷却の 2 結晶分光器及び 4 結晶のネステッド型 高分解能モノクロメータで単色化して試料に照射した。¹⁴⁹Sm 核共鳴散乱の信号を検出するため、2 nsec 間隔の X 線パルスが 4 つ連続する bunch train が 51 nsec だけ間隔をあけた SPring-8 の 4 bunch x 84 traii モードを選択した[10]。試料を透過した X 線はトランスデューサに装着された ¹⁴⁹Sm₂O₃ のアナライザー で散乱された X 線をアナライザーと同じ真空チャンバー中に設置された APD 検出器で計測した[11]。 APD 検出器で観測した信号と SPring-8 の加速器の信号を同期させて X 線パルスが入射されてから 20 nsec 以降の核共鳴散乱の信号として取り出した。メスバウアー・スペクトルは核共鳴散乱の信号とトラ ンスデューサの制御に用いるファンクション・ジェネレータと同期させてマルチチャンネル・アナライ ザーに取り込んで測定した。また、ドップラー速度の校正はレーザー干渉計を用いて行い、速度ゼロは Sm₂O₃ の異性体シフトを基準とした。

3.149Sm メスバウアー効果における動的超微細相互作用の観測

電子系と原子核の相互作用である超微細相互作用はプローブ核位置での磁気モーメントの大きさや 価数を知るための手段として用いられることが多いが、動的な相互作用が観測されることもある。メス バウアー分光は超微細相互作用の観測においては NMR/NQR と相補的関係にあるが、観測される超微細 相互作用は多くの場合には静的超微細相互作用であり、電子系の揺らぎに関わる指標となるパルス法の NMR/NQR で得られる緩和時間のような動的物理量を直接計測することは困難である。このため、メス バウアー分光において動的感受率を議論できるのは、動的な超微細相互作用に特徴的なスペクトルが観 測される場合や観測されている超微細相互作用が物理的に揺動していることが明らかな場合に限られ る。前者の場合には、スペクトルを静的な超微細相互作用として解釈することがほぼ不可能なスペクト ルが観測され、異性体シフト、電場勾配や内部磁場の時間揺らぎを考慮したモデルで解析を行う必要が ある[12]。一方、後者の場合には近似的に静的な超微細相互作用を前提してスペクトルを解釈すること が可能で、電子系の揺らぎに関わる部分は主として共鳴線幅の広がりとして議論される。

動的な超微細相互作用が観測された場合の議論において重要となるのが、対象となる時間スケールで ある。電子物性を議論する際の動的な超微細相互作用では、核の性質に多少依存するが、概ね GHz から MHz オーダーの電子系の揺らぎがその時間スケールの対象となる。本研究で対象となる電子系の揺ら ぎは Sm 金属間化合物における価数と磁気モーメントの揺らぎであり、¹⁴⁹Sm 核においては以下のよう な時間スケールが議論できる。Sm の基底状態は非磁性である 2 価と磁性を有する 3 価であり、前者の 異性体シフトはドップラー速度~-1 mm/sec、後者のそれは~0 mm/sec(いずれも基準は Sm₂O₃)であ る。また、比熱による磁気エントロピーから期待されるГ₈ 基底状態[8]の Sm 核位置での内部磁場が高々 309 T、Sm³⁺のフリー・イオンでも高々450 T である[13-15]。既知である¹⁴⁹Sm 核の基底状態及び励起状態 の核磁気モーメントを考慮すれば[16]、¹⁴⁹Sm 核のメスバウアー分光を用いて議論できる凡その時間スケ ールは、価数の揺らぎにおいて MHz オーダー、磁気揺らぎにおいて 10 MHz オーダーであることがわか る[3]。

Fig. 1. ¹⁴⁹Sm synchrotron-radiation-based Mössbauer spectroscopy of SmT_2Al_{20} (T: Ti, V, Cr) at selected temperatures.

<u>4. SmT₂Al₂₀の¹⁴⁹Sm 放射光メスバウアー分光</u>

Fig. 1 に Sm T_2 Al₂₀の¹⁴⁹Sm 放射光メスバウアー・スペクトルを示す。SmCr₂Al₂₀において最低温度の 4.2 K で非対称なスペクトルが観測されるものの、100 K 以上および SmCr₂Al₂₀ 以外の試料においてはシン グル・ラインのスペクトルが観測された。室温のスペクトルから得られる異性体シフトの値は SmTi₂Al₂₀、SmV₂Al₂₀及び SmCr₂Al₂₀においてそれぞれ-0.10 ± 0.03 mm / sec、-0.09 ± 0.03 mm / sec 及び-0.07 ± 0.03 mm / sec であった。これらの値は Sm の価数が一連の Sm T_2 Al₂₀において 2 価と 3 価の間の中間価数 状態であることを示しているとともに、その遷移金属依存性は Ti、V、Cr の順に Sm の 4f 電子と伝導電 子の混成が強くなっていることを示唆していると考えられる。また、¹⁴⁹Sm 放射光メスバウアー分光に おいてシングル・ラインのスペクトルが観測されたことは、Sm の L_{III} 吸収端の XAS において 2 価と 3 価の成分が観測されたことと明らかに異なっており[5]、Sm 価数が観測の時間窓により異なった状態と して観測されることを示している。前述のとおり、¹⁴⁹Sm メスバウアー効果の時間窓が MHz 領域であり、 Sm の L_{III} 吸収端の XAS の時間窓が PHz 領域であることを考慮すると[17, 18]、¹⁴⁹Sm 放射光メスバウア ー分光と XAS で得られた結果を矛盾無く解釈でき、SmT₂Al₂₀ における Sm の価数はいずれの化合物に おいても揺動していることと結論付けられる。また、Fig. 2 に示すスペクトルの重心位置 (Center Shift, C. S.) の温度依存性はいずれの SmT₂Al₂₀ においても直線的な温度変化を示す。この直線の傾きは ¹⁴⁹Sm メスバウアー効果における 2 次ドップラー・シフトの高温極限である 2.7×10⁴ mm / sec / K と実験誤差 の範囲で一致を示すことから[19]、観測されている温度変化は格子(フォノン)系由来であると考えら れる。すなわち、直線的なスペクトル重心位置の温度変化を 2 次ドップラー・シフトによるものである と解釈することによって、既知の XAS から見積もった Sm の平均価数が温度変化を示さないこととも 矛盾しない[5]。

Fig. 2. Temperature dependence of center shifts in SmT_2Al_{20} (*T*: Ti, V, Cr). Solid lines are a guide to the eye.

Fig. 3. Temperature dependence of spectral line width in $\text{Sm}T_2\text{Al}_{20}$ (*T*: Ti, V, Cr). Solid curves are a guide to the eye.

SmT₂Al₂₀の¹⁴⁹Sm 放射光メスバウアー・スペクトルでは、電荷や磁気による揺らぎが示唆される線幅の温度変化が観測された。Fig.3にSmT₂Al₂₀の¹⁴⁹Sm 放射光メスバウアー・スペクトルの線幅の温度変化を示す。Fig.3では明らかに非対称な4.2Kのスペクトルについては評価しなかったが、それ以外のスペクトルについてはローレンツ関数で解析したときの線幅の温度変化をプロットした。Table1に示すように一連のSmT₂Al₂₀の磁気転移温度は最も高いSmTi₂Al₂₀でも6.5Kであるので、観測されている線幅の広がりは磁気秩序などによる静的な超微細相互作用ではなく、磁気や電荷の揺らぎによる動的な超微細相互作用の効果によるものであると考えられる。また、線幅の広がりは測定したすべてのSmT₂Al₂₀で観測されているが、電子比熱係数の大きさに応じて高温から観測されている。このことから、観測された動的超微細相互作用は重い電子の形成に関わる低エネルギーの揺らぎの可能性が高い。この動的超微細

相互作用の起源については、4.2 K での SmCr₂Al₂₀ と 3 K での SmTi₂Al₂₀のスペクトルにそのヒントが隠されていると考えられる。4.2 K の SmCr₂Al₂₀のスペクトルは分布を考慮した超微細相互作用として 20.5 ±0.6 T の内部磁場と $e^2qQ_{ex} = -4.7\pm0.6$ mm / sec の四極子相互作用としてスペクトルを再現することができた。但し、線幅は 200 K 以上で観測されている約 1.0 mm / sec 程度の約 2 倍である 1.7 ± 0.2 mm / sec であることを考慮すると、電子系の揺らぎを反映した動的な超微細相互作用が観測されていると解釈することができる。また、SmTi₂Al₂₀の磁気秩序状態である 3 K において 270±3 T の内部磁場と $e^2qQ_{ex} = -12.2\pm0.2$ mm / sec の四極子相互作用が観測されていることも考慮すると[19]、秩序状態の SmTi₂Al₂₀ 及び転移温度直上の SmCr₂Al₂₀ において観測されている核四極子相互作用はともに磁気モーメントと同時に誘起される電子系の四極子モーメントの寄与によるものと考えられる。したがって、一連の SmT₂Al₂₀ の転移温度以上で観測されている線幅の広がりの要因は内部磁場の揺らぎによるものであると考えられる。

<u>5. まとめ</u>

ー連の SmT₂Al₂₀ (*T*: Ti, V, Cr) の¹⁴⁹Sm 放射光メスバウアー分光により Sm サイトの電荷と磁気 の揺らぎを観測した。Sm サイトの電荷の揺らぎについては、XAS スペクトルと放射光メスバウア ー・スペクトルとの差異を観測の時間窓の違いで説明でき、Sm 価数の揺らぎとして MHz オーダー であることが結論付けられた。さらに、スペクトルの線幅に顕著な温度依存性と遷移金属 *T* 依存性 が観測され、Sm 価数の揺らぎとは別の自由度による低周波の揺らぎを示唆する結果が得られた。 基本的には結晶構造が同じ一連の SmT₂Al₂₀ の電子構造は類似していると考えられることに加えて、 SmTi₂Al₂₀ の基底状態でのスペクトルや SmCr₂Al₂₀ のスペクトルの温度変化を考慮すると、一連の SmT₂Al₂₀ で観測されたスペクトル線幅の温度変化は磁気揺らぎの可能性が高いことが示唆される。 また、その磁気揺らぎに起因する線幅の温度変化と電子比熱係数の遷移金属 *T* 依存性から判断する 限り、線幅の増大に起因する揺らぎが SmT₂Al₂₀ の重い電子形成機構に大きく関わっていることが 示唆される。

謝辞

本研究で行った実験は SPring-8 の課題番号 2015B1947、2016A1413、2016B1057 及び 2017A1060 の下 で実施された。本研究は新学術領域 J-Physics (課題番号:15H05884)、基盤研究 (B) (課題番号:15H3693, 15H03697)、基盤研究 (C) (課題番号:15K05178,16K05454) 及び挑戦的萌芽研究 (課題番号:15K14170) の科研費の支援を受けて遂行された。

参考文献

[1] 例えば、S. Watanabe and K. Miyake: Phys. Rev. Lett. 105, 186403 (2010).

[2] S. Sanada, Y. Aoki, H. Aoki, A. Tsuchiya, D. Kikuchi, H. Sugawara, and H. Sato: J. Phys. Soc. Jpn. 74, 246 (2005).

[3] R. Higashinaka, T. Maruyama, A. Nakama, R. Miyazaki, Y. Aoki, and H. Sato: J. Phys. Soc. Jpn. 80, 390703 (2011).

[4] M. Mizumaki, S. Tsutsui, H. Tanida, T. Uruga, D. Kikuchi, H. Sugawara, and H. Sato, J. Phys. Soc. Jpn. 76, 053706 (2007).

[5] R. Higashinaka, A. Yamada, R. Miyazaki, Y. Aoki, M. Mizumaki, S. Tsutsui, K. Nitta, T. Uruga, and H. Sato, J. Phys. Soc. Conf. Proc. **3**, 011079 (2014).

[6] S. Tsutsui, N. Kawamura, M. Mizumaki, N. Ishimatsu, H. Maruyama, H. Sugawara, and H. Sato: J. Phys. Soc. Jpn. **82**, 023707 (2013).

[7] A. Yamada, R. Higashinaka, K. Fushiya, T. Asano, T. D. Matsuda, M. Mizumaki, S. Tsutsui, K. Nitta, T. Ina, T. Uruga, J. Phys.: Conf. Ser. **683**, 012020 (2016).

[8] A. Sakai, and S. Nakatsuji: Phys. Rev. B 84, 201106 (2011).

[9] S. Tsutsui, R. Masuda, Y. Kobayashi, Y. Yoda, K. Mizuuchi, Y. Shimizu, H. Hidaka, T. Yanagisawa, H. Amitsuka, F. Iga, and M. Seto: J. Phys. Soc. Jpn. 85, 083704 (2016).

[10] http://www.spring8.or.jp/en/users/operation_status/schedule/bunch_modes

[11] R. Masuda, Y. Kobayashi, S. Kitao, M. Kurokuzu, M. Saito, Y. Yoda, T. Mitsui, F. Iga, and M. Seto: Appl. Phys. Lett. **104**, 082411 (2014).

[12] 例えば、H. H. Wickman, M. P. Klein, and D. A. Shirley: Phys. Rev. 152, 345 (1966).

[13] 結晶場やスピン・軌道相互作用が無視できる仮定での Sm 核位置での超微細結合定数は 476 T / μB

[14,15]。フリー・イオンの Sm³⁺の磁気モーメントは 0.85 µB / Sm。

[14] A. Barla, J. P. Sanchez, Y. Haga, G. Lapertot, B. P. Doyle, O. Leupold, R. Rüffer, M. M. Abd-Elmeguid, R. Lengsdorf, and J. Flouquet: Phys. Rev. Lett. **92**, 066402 (2004).

[15] S. Ofer, E. Segal, I. Nowik, E. A. Bauminger, L. Grodzins, A. J. Freeman, and M. Schieber: Phys. Rev. 137, A627 (1965).

[16] http://www.medc.dicp.ac.cn/Resources-issotopes/Resource-Sm.php

[17] B. K. Teo: EXAFS: Basic Principles and Data Analysis (Springer-Verlag, Berlin, 1986).

[18] O. Keski-Rahkonen and M. O. Krause, At. Data Nucl. Data Tables 14, 139 (1974).

[19] S. Tsutsui, Y. Kobayashi, J. Nakamura, M. K. Kubo, S. Amagasa, Y. Yamada, Y. Yoda, Y. Shimizu, H. Hidaka, T. Yanagisawa, H. Amitsuka, A. Yamada, R. Higashinaka, T. D. Matsuda, and Y. Aoki: Hyperfine Int. 238, 100 (2017).

双安定性を示す Hofmann-like 高分子錯体

Hofmann-like Coordination Polymers with Bi-stable States

東邦大理1、東邦大複合物性センター2

北澤孝史^{1,2}、関谷円香¹、高橋正^{1,2}

T. Kitazawa^{1,2}, M. Sekiya¹, and M. Takahashi^{1,2}

¹Faculty of Science, Toho University

²Research Centre for Materials with Integrated Properties, Toho University

1. はじめに

高スピン状態と低スピン状態の双安定状態を温度、圧力、ゲスト包接等の外部刺激に よりとりえるスピンクロスオーバー挙動については、Fe²⁺錯体について多くの研究がな され、Hofmann-like 高分子錯体をはじめてとする配位高分子錯体についての研究も活発 に行われている[1-17]。数多くのシアノ金属錯体が知られているが、それらの金属錯体 ではシアノ基は、単座配位子および両座配位子と挙動することができ、磁気物性とも大 きく関連している。K₂[Ni(CN)₄]では、シアノ基は単座配位子(末端配位子)と挙動し 平面4配位単核錯体であり、Ni²⁺の電子状態は d⁸で不対電子を持たない反磁性である。 現在世界的に多くの研究室で盛んに研究されている Hofmann-like スピンクロスオーバ ー化学物群の原型であるホフマン-ピリジン型スピンクロスオーバー錯体

Fe(pyridine)₂Ni(CN)錯体の磁気物性は当グループでメスバウアー分光法及び SQUID 測定により 1996年に明らかにされ、その結晶構造においては、シアノ基は架橋配位子として挙動し八面体 6 配位 Fe²⁺と四面体四配位 Ni²⁺を連結している。それゆえ配位高分子 錯体 Fe(pyridine)₂Ni(CN)₄は、2 次元層状構造を形成している[3a]。さらに、2 座配位子 である pyrazine を用いた場合、pyrazine は架橋配位子としての挙動が可能となり 3 次元 ホフマン-ピラジン型スピンクロスオーバー錯体 Fe(pyrazine)M(CN)₄を与えスピン転移 温度は上昇する[3b]。なお、ref. 3a より ref. 3b の方が、圧倒的に引用数が多い。この 3 次元配位高分子では、pyrazine は八面体 6 配位 Fe²⁺間を架橋しておりゲストを取り込む ことができる空孔ができ、ゲスト応答性のスピンクロスオーバー挙動を示す[8,9]。

配位高分子をホスト骨格に有するホフマン型スピンクロスオーバー化合物は,2次元 および3次元ホストの構成金属イオン、ホスト面を支える配位子、空孔に包接されたゲ スト分子などからなり、その磁気転移挙動がこれら構成要素の多様な組み合わせによっ て興味ある様相を示すことが見出されている[1-23]。当グループでは、ホフマン型包接 対の研究の過程で、8面体サイトに Fe²⁺を用いることで、めずらしい 2 次元構造を有 する超分子スピンクロスオーバー化合物[Fe(pyridine)₂Ni(CN)₄]を発見し(Figure 1)、系統 的に研究を展開している。 これらのスピンクロスオーバー化合物においては、低温に おいて磁気転移を示すことをメスバウアー分光法および SQUID を用いて特性評価を行 い、さらに、単結晶構造解析の手法を用いて、磁気転移を 2 価の鉄イオンまわりの配位 構造変化 (High Spin (HS) 状態((t_{2g})⁴(e_g)²)と Low Spin (LS)の状態((t_{2g})⁶)間の可逆的変換 に関連付けることを行なっている。

次元性を高めることによりス ピン転移温度の上昇を狙う観点 から、スペインのバレンシア大の グループは、八面体 6 配位鉄(II) イオンに配位している pyridine を 架橋配位子となり得る pyrazine に 変えた 3 次元構造錯体 [Fe(pyrazine)M(CN)4]nH₂O を合成 し、室温付近でのスピン転移温度 を実現した。実用性の観点からは、 スピン転移温度が室温付近でヒ ステリシスが大きいことが重要 であると考えられており、この結果 は,次元性を高めることで格子内の 金属イオン間の協同効果が高めら

Figure 1 Crystal structure of Spin Crossover Fe(pyrideine)₂Ni(CN)₄

れ、それに付随して高いスピン転移温度と大きなヒステリシスを実現することが可能な ことを示したことは大きな成果であった。最近ではこれらの研究に触発され、国内、国 外の多くの研究グループがこの種の超分子スピンクロスオーバー錯体についての研究 に着手している[1-23]。すなわち、プロトタイプである Fe(pyridine)₂Ni(CN)₄は、多彩な 構造展開が可能であり、その構造展開によりスピンクロスオーバー挙動の制御へのフィ ードバックが行える可能性が大きい系である。われわれのグループもその後の研究で、 結晶学的に同型なフレームワーク中に立体化学的見地から系統的に選んだ一連のゲス ト種を包接させ、得られた化合物について広い温度範囲の単結晶構造解析と磁気測定を 測定した。その結果、格子とゲストおよびゲスト同士の協同的相互作用(水素結合や π - π スタッキングなど)が、磁気転移挙動を微妙に影響していることが明らかになってき ている。また、近年[Fe(pyrazine)M(CN)₄]nGuest 系においてゲスト分子のホスト相にお けるスピンクロスオーバー挙動への影響に関する研究も盛んになっている[6-14]。また、 3次元ホフマン型配位高分子を水素分子貯蔵に応用した研究例も報告されており、注目 度が増している[15]。今回、置換基を持つピラジン系配位子がどのようにスピンクロス オーバー挙動に影響を与えるかの観点から、架橋配位子として共同する可能性もあるが 置換基の立体障害のため単座配位子と挙動する可能性がある 2-Methylpyrazine を用いて 実験を行なった。予想外に、単座配位子と挙動している新規スピンクロスオーバー2次 元錯体 Fe(2-Methylpyrazine)₂Ni(CN)₄ を得たので報告する。

2. 実験

Fe(2-Methylpyrazine)₂Ni(CN)₄ は、直接法では粉末結晶の合成を 行った。蒸気拡散法、接触法では 単結晶の合成を行った。中心金属 としてモール塩を使用し、架橋配 位子には平面4配位型[Ni(CN)4]⁻ を使用した。また直接法と蒸気拡 散法では緩衝溶液としてクエン 酸と1,3-Diaminopropane、pyrazine 系配位子として2-Methylpyrazine を使用した。接触法では鉄の酸化 防止剤としてアスコルビン酸を 使用した。合成した錯体について、 液体窒素下での色の変化を確認

し、CHN 元素分析、IR 測定、熱重 量分析を行い組成が正しい事を示 した。⁵⁷Fe メスバウアー分光法測定 は、通常の方法で行った。

Figure 2 57Fe Mössbauer spectra for Fe(2-Methylpyrazine)₂Ni(CN)₄

3. 結果および考察

Fe(2-Methylpyrazine)₂Ni(CN)₄の粉末 X 線回折パターンは、すでに単結晶 X 線構造解 析で構造が明らかになっている Fe(2-Methylpyrazine)₂Pd(CN)₄と類似のパターンを示す ことより類似な構造をしていると考えられる。すなわち、2-Methylpyrazine は、Fe²⁺に対 して、架橋配位子ではなく単座配位子として挙動しており 2 次元層状構造をとると考え られる。それにより組成における Fe²⁺と 2-Methylpyrazine の比は 1:2 となっている。こ れは、元素分析からも支持される。Fe(2-Methylpyrazine)₂Ni(CN)₄のメスバウアースペク トルを Figure 2 に示す。高スピンサイトが低スピンサイトに転移していることが分かる。 298 K では、ほぼ 100 %が高スピン状態で、77 K ではほぼ 100 % が低スピン状態であ ることが分かる。降温では 190 K 付近で高スピンから低スピンへのスピン転移が始ま り、昇温では 196 K 付近で低スピンから高スピンへのスピン転移が始まっていること がわかる。また、約 10K 程度のヒステリシスがあることがわかる。Fe(pyridine)₂Ni(CN)₄ のスピン転移温度より 20 K 程度高い。これは、2-Methylpyrazine が弱く Ni²⁺と相互作用 し次元性を若干高めていることが関連しているかもしれない。

今回、2-Methylpyrazine は二座配位子となりえるので架橋配位子とし3次元構造をとる 可能性もあるが、2-Methylpyrazine 配位子は pyridine 配位子と同様に単座配位子と挙動 し組成 Fe(2-Methylpyrazine)₂Ni(CN)₄の新規なスピンクロスオーバーが得られることが 明らかになった。このスピンクロスオーバー錯体は、Hofmann-like スピンクロスオーバ ー高分子錯体化合物群のさらなる発展の可能性を示すものである。

<u>Acknowledgement</u>: This work was also partly supported by Japan Society for the Promotion Science (JSPS) KAKENHI Grant Number 15K05485.

References

[1] P. Gütlich, H. A. Goodwin, (eds.) Spin Crossover in Transition Metal Compounds, Topics in Current Chemistry, Springer Verlag, Berlin, 233, 234, 235 (2004)

[2] Y. Garcia, V. Niel, M. C. Muñoz, J. A. Real, Top. Curr. Chem. 233, (2004) 229

[3](a)T. Kitazawa, Y. Gomi, M. Takahashi, M. Takeda, M. Enomoto, A. Miyazaki, T. Enoki, J. Mater. Chem. 6, (1996) 119, (b) V. Niel, J. M. Martinez-Agudo, M. C. Muñoz, A. B. Gaspar, J. A. Real, Inorg. Chem. 40 (2001), 3838.

[4] T. Sato, F. Ambe, T. Kitazawa, H. Sano, M. Takeda, Chem. Lett., 1287(1997)

[5]T. Kitazawa, Mi. Takahashi, Ma. Takahashi, M. Enomoto, A. Miyazaki, T. Enoki, M., Takeda, J. Radio. Nucl. Chem. 239, 285(1999)

[6] (a) S. M. Neville, G. J. Halder, K. W. Chapman, M. B. Duriska, B. Moubaraki, K. S. Murray, C. J. Kepert, J. Am. Chem. Soc. 131 (2009) 12106. (b) J. J. M. Ammore, S. M. Neville, B. Moubaraki, S. S. Iremonger, K. S. Murray, J-F. Létard, C. J. Kepert Chem. Eur. J. 16 (2010) 1973. (c) J-B Lin, W. Xue, B-Y. Wang, J. Tao, W-X Zhang, J-P. Zhang, X-M Chen, Inorg. Chem. 51 (2012) 9423. (d) S. M. Neville, B. Moubaraki, K. S. Murray, C. J. Kepert, Angew. Chem. Int. Ed. 46 (2007) 2059.

[7] N.F. Sciortino, K. R. Scherl-Gruenwald, G. Chastanet, G. J. Halder, K. W. Chapman, J-F. Létard, C. J. Kepert, Angew. Chem. Int. Ed. 51 (2012) 10154.

[8] M. Ohba, K. Yoneda. G. Agustí, M. C. Muñoz, A. B. Gaspaer, J. A. Real, M. Yamasaki, H. Ando, Y. Nakao, S. Sakaki, S. Kitagawa, Angew. Chem. Int. Ed. 48 (2009) 4767.

[9] P. D. Southon, L. Liu, E. A. Fellows, D. J. Price, G. J. Halder, K. W. Chapman, B. Boujemaa, K. S. Murray, J-F. Létard, C. J. Kepert, J Am. Chem. Soc. 131 (2009) 10998.

[10] F. J. Muñoz-Lara, A. B. Gasper, D. Aravena, E. Ruiz, M. C. Muñoz, M. Ohba, R. Ohtani S. Kitagawa J. A. Real, Chem. Comm., 48 (2012) 4686.

[11] F. J. Muñoz-Lara, A. B. Gasper, M. C. Muñoz, M. Arai, S. Kitagawa, M. Ohba J. A. Real, Chem. Eur. J. 18 (2012) 8013.

[12] C. Bartual-Murgui, L. Salmon, A. Akou, N. A. Ortega-Villar, H. J. Shepherd, M. C. Muñoz,G. Molnár, J. A. Real, A. Bousseksou, Chem. Eur. J. 18 (2012) 507

[13] (a)T. Kitazawa, M. Takahashi, T. Kawasaki, Hyperfine Interact. 218(2013) 133

(b) T. kitazawa, M. Takahashi, Hyperfine Interact. 226(2014)

https://doi.org/10.1007/s10751-013-0939-x

[14] (a) G.J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, J. D. Cashion, Science, 298 (2002) 1756. (b) J.A. Real, E. Adres, M. C. Muñoz, M. Julve, T. Granier, A.Bousseksou, F. Vallet, Science 268 (1995) 265.

[15] T. Kosone, A. Hori, E. Nishibori, Y. Kubota, A. Mishima, M. Ohba, H. Tanaka, K. Kato, J. Kim, J. A. Real, S. Kitagawa, M. Takata, R.Soc.open sci. 2, 150006(2015) http://dx.doi.org/10.1098/rsos.150006

[16] K. Hosoya, S. Nishikiori, M. Takahashi, T. Kitazawa, Magnetochemistry, 2(2016) 1. doi:10.3390/magnetochemistry2010008

[17] T. Kosone, T. Kitazawa, Inorg. Chim. Acta, 439(2016) 159.

[18] T. Kosone, T. Kawasaki, I. Tomori, J. Okabayashi, T. Kitazawa, Inorganics, 5 (2017), 55/1-55/8. doi:<u>10.3390/inorganics5030055</u>

[19] T. Kitazawa, T. Kishida, T. Kawasaki, Ma. Takahashi, Hyperfine Interact. 238 (2017), 1-9. https://doi.org/10.1007/s10751-017-1436-4

[20] Y. Ueki, J. Okabayashi, T. Kitazawa, Chem. Lett. 46 (2017), 747-749.

[21] T. Kitazawa, T. Kawasaki, H. Shiina, Ma. Takahashi, Croat. Chem. Acta, 89(2016), 111-115.

[22] Fu-Ling Liu, Dong Li, Li-Jie Su and Jun Tao, Dalton Trans., 2018, Advance Article http://dx.doi.org/10.1039/C7DT04205A

[23] Kitazawa, T., Sekiya, M., Kawasaki, T. et al. Hyperfine Interact (2016) 237: 29. https://doi.org/10.1007/s10751-016-1238-0

鉄混合原子価錯体における連結異性と電荷移動相転移に及ぼす効果の メスバウアー分光研究

Study of the Linkage Isomerization and Its Influence on the Charge Transfer Phase Transition for Iron Mixed-Valence Complexes by Means of Mössbauer Spectroscopy

豊田理化学研究所

小島憲道

N. Kojima

Toyota Physical and Chemical Research Institute

1. はじめに

金属イオンの配位子場がスピンクロスオーバー領域にある混合原子価錯体では、電荷 とスピンが連動した特異な相転移を起こす可能性を持っており、従来のスピンオーバー 錯体には見られない新現象が期待される。このような観点から、我々は非対称配位子(mto = C_2O_3S , dto = $C_2O_2S_2$, tto = C_2OS_3) を架橋とする鉄混合原子価錯体 A[Fe^{II}Fe^{III}X₃] (A = $(n-C_nH_{2n+1})_4N$, spiropyran; X = mto, dto, tto) を開発し、 $(n-C_nH_{2n+1})_4N$ [Fe^{II}Fe^{III}(dto)₃] (n = 3, 4) では、120 K~140 Kにおいてスピンと電荷の協同効果によって発現する電荷移動相転移 を見出し[1,2]、($n-C_nH_{2n+1}$)₄N[Fe^{II}Fe^{III}(mto)₃](mto = C₂O₃S)では、Fe^{III}O₃S₃サイトで起こる 動的スピン平衡と Fe^{II}-Fe^{III} 間原子価揺動の協奏現象を見出した[3]。(n-C_nH_{2n+1})₄N [Fe^{II}Fe^{III}(dto)₃]は非対称な配位子(dto)が Fe^{II}と Fe^{III}を交互に架橋し、二次元蜂の巣構造を とっている。Fe^{III} サイトは6個の硫黄原子に取り囲まれ低スピン状態(LS: S = 1/2)をとり、 Fe^{II} サイトは6個の酸素原子で取り囲まれ高スピン状態(HS: S = 2)をとっている。 $[Fe^{II}Fe^{III}(dto)_3]$ 層はカチオン層 $(n-C_nH_{2n+1})_4N^+$ をはさんで交互に積層しており、 (*n*-C_nH_{2n+1})₄N⁺の一つのアルキル鎖は Fe と dto で形成された六角形の穴を貫いている[4]。 この系は、架橋配位子が非対称であり、dto における配位原子の硫黄原子および酸素原子 はそれぞれ柔らかい塩基および硬い塩基であることから、合成温度および溶媒の条件に よっては dto が反転して連結異性を部分的に起こす。ここでは、57Fe を 96%に濃縮した純 鉄を出発原料として用い、酸素原子が配位した Fe^{II} サイトを 57Fe で置換した錯体 (n-C_nH_{2n+1})₄N[⁵⁷Fe^{II}Fe^{III}(dto)₃]および硫黄原子が配位した Fe^{III} サイトを ⁵⁷Fe で置換した錯 体(n-C_nH_{2n+1})₄N[Fe^{II 57}Fe^{III}(dto)₃]を合成し、連結異性の生じる条件を調べた。

2. (*n*-C_nH_{2n+1})₄N[⁵⁷Fe^{II}Fe^{III}(dto)₃]および(*n*-C_nH_{2n+1})₄N[Fe^{II 57}Fe^{III}(dto)₃]の合成

Fe^{III}サイトを⁵⁷Feで置換した錯体(*n*-C_nH_{2n+1})₄N[Fe^{II 57}Fe^{III}(dto)₃]は下記の方針で合成した。

$[K_2(dto) (dto = C_2O_2S_2)の合成]$

まず氷浴中の塩化オキザリル(COCl)2にドデカンチオールCH₃(CH₂)₁₁SHを滴下するこ とにより、C₂O₂(S₂C₁₂H₂₅)2を合成する。その後、70 ℃で攪拌し、未反応物質と副生生物の 塩酸を完全に追い出した後、室温まで放冷した。次に $C_2O_2(S_2C_{12}H_{25})_2$ に対して水硫化カリウムKHSを溶かした脱水メタノール溶液滴下した後、50 °Cまで加熱し撹拌することにより自色沈殿の $K_2(dto)$ が生成した。

【KBa[⁵⁷Fe^{III}(dto)₃]・3H₂Oの合成】

最初に⁵⁷Feを硝酸に溶かし⁵⁷Fe(NO₃)₃·9H₂Oを合成した。次に⁵⁷Fe(NO₃)₃·9H₂Oを蒸留水 に溶かし、そこに蒸留水に溶かしたK₂(dto)を加えると、溶液は黒色に変化した。その溶 液を濾過してFeSなどの不純物を取り除いた後、濾液にBaBr₂水溶液を加えると直ちに黒 紫色の沈殿が析出した。十分撹拌した後、氷浴にて結晶を析出させることにより KBa[⁵⁷Fe^{III}(dto)₃]·3H₂Oを得た。

【(n-C_nH_{2n+1})₄N[Fe^{II 57}Fe^{III}(dto)₃]の合成】

窒素気流中で 2:3 の水/メタノール混合溶媒に $Fe^{II}SO_4 \cdot 7H_2O$ 、 $(n-C_nH_{2n+1})_4NBr$ およびアスコルビン酸を溶かす。その溶液に対して、2:3 の水/メタノール混合溶媒に $KBa[^{57}Fe^{III}(dto)_3] \cdot 3H_2O$ を溶かした溶液を徐々に滴下することにより、黒色沈澱が析出する。吸引濾過して得た黒色沈殿に対して、水とメタノールの混合溶液とジエチルエーテルで洗浄した後、真空乾燥をしての $(n-C_nH_{2n+1})_4N[Fe^{II} \cdot 5^7Fe^{III}(dto)_3]$ を得ることができた。

【(n-C_nH_{2n+1})₄N[⁵⁷Fe^{II}Fe^{III}(dto)₃]の合成】

最初に窒素気流中で ⁵⁷Fe を塩酸に溶かし ⁵⁷FeCl₂·4H₂O を合成した。次に窒素気流中で 2:3 の水/メタノール混合溶媒に、 ⁵⁷FeCl₂·4H₂O 、 $(n-C_nH_{2n+1})_4$ NBr およびアスコルビン酸 を溶かした溶液に対して、2:3 の水/メタノール混合溶媒に KBa[Fe^{III}(dto)₃]•3H₂O を溶かし た溶液を徐々に滴下することにより $(n-C_nH_{2n+1})_4$ N[⁵⁷Fe^{II} Fe^{III}(dto)₃]を得ることができた。 Fig. 1 に $(n-C_nH_{2n+1})_4$ N[Fe^{II 57}Fe^{III}(dto)₃]合成の概略図を示す。

Fig. 1. Schematic representation of the synthesis for $(n-C_nH_{2n+1})_4N[Fe^{II}Fe^{III}(dto)_3]$.

3. (n-C₃H₇)₄N[⁵⁷Fe^{II}Fe^{III}(dto)₃]および(n-C₃H₇)₄N[Fe^{II 57}Fe^{III}(dto)₃]の⁵⁷Fe メスバウアース

ペクトル

 $(n-C_nH_{2n+1})_4N[Fe^{II} Fe^{III}(dto)_3]において、非対称配位子のdtoを架橋としてFe^{II}とFe^{III}が$ 交互に結合して二次元蜂の巣格子を形成している。dtoにおける配位原子の硫黄および酸素はそれぞれ柔らかい塩基および硬い塩基であることから、合成温度および溶媒の条件によっては dto が反転して連結異性を部分的に起こす。この連結異性を定量的に調べるため、⁵⁷Fe を 96%に濃縮した純鉄を出発原料として用い、酸素原子が配位した Fe^{II} サイト $を ⁵⁷Fe で置換した錯体<math>(n-C_nH_{2n+1})_4N[5^7Fe^{III}(dto)_3]$ および硫黄原子が配位した Fe^{III} サイ トを ⁵⁷Fe で置換した錯体 $(n-C_nH_{2n+1})_4N[Fe^{II} 5^7Fe^{III}(dto)_3]$ を合成し、⁵⁷Fe メスバウアースペ クトルを調べた。Fig. 2 は $(n-C_3H_7)_4N[Fe^{II} 5^7Fe^{III}(dto)_3]$ および $(n-C_3H_7)_4N[5^7Fe^{III}(dto)_3]$ に おいて予想される ⁵⁷Fe メスバウアースペクトルである。 $5^7Fe^{III}S_6$ サイトでは S = 1/2の低 スピン状態とそれに起因する小さな四極子分裂を伴ったスペクトルが期待され る。

Fig. 2. Schematic representation of the honeycomb network structure of $[Fe^{II}Fe^{III}(dto)_3]$ and the expected ⁵⁷Fe Mössbauer spectra of ⁵⁷Fe^{III}S₆ and ⁵⁷Fe^{III}O₆ sites.

Fig. 3 は(n-C₃H₇)₄N[Fe^{II 57}Fe^{III}(dto)₃]および(n-C₃H₇)₄N[⁵⁷Fe^{II}Fe^{III}(dto)₃]における ⁵⁷Fe メス バウアースペクトルである。200 K において、(n-C₃H₇)₄N[Fe^{II 57}Fe^{III}(dto)₃]のスペクトルは ⁵⁷Fe^{III}S₆ (S = 1/2)のスペクトルに帰属され、(n-C₃H₇)₄N[⁵⁷Fe^{II}Fe^{III}(dto)₃]のスペクトルは ⁵⁷Fe^{II}O₆ (S = 2)のスペクトルに帰属される。この系の温度を 200 K から低温に下げて行く と、120 K 付近でスペクトルが劇的に変化するが、120 K 以下で(n-C₃H₇)₄N[Fe^{II 57}Fe^{III}(dto)₃] および(n-C₃H₇)₄N[⁵⁷Fe^{II}Fe^{III}(dto)₃]に新しく出現したスペクトルは、それぞれ ⁵⁷Fe^{III}S₆ (S = 0) および ⁵⁷Fe^{III}O₆ (S = 5/2)に帰属される。この解析により、120 K 付近で起こる変化は Fe^{II} から Fe^{III} に電子が一斉に集団移動する電荷移動相転移に起因するものであることを実証 することができた。

Fig. 3. ⁵⁷Fe Mössbauer spectra of $(n-C_3H_7)_4N[^{57}Fe^{II}Fe^{III}(dto)_3]$ synthesized at 10°C and $(n-C_3H_7)_4N[Fe^{II} {}^{57}Fe^{III}(dto)_3]$ synthesized at 30°C.

4.⁵⁷Fe メスバウアー分光法による(n-C₃H₇)₄N[Fe¹¹Fe¹¹¹(dto)₃]における連結異性の解析

Fig. 4 は溶媒をメタノール、合成温度条件を 10℃および 40℃に設定して合成した $(n-C_3H_7)_4N[5^7Fe^{II}Fe^{III}(dto)_3]$ の $5^7Fe メスバウアースペクトルの比較である。合成条件が 10℃ の場合、200 K におけるスペクトルは、<math>5^7Fe^{II}O_6$ (*S* = 2)に帰属される大きな四極子分裂の あるダブレットが主成分である。なお、合成条件が 10℃で合成した $(n-C_3H_7)_4N$ [$5^7Fe^{II}Fe^{III}(dto)_3$]のスペクトルで、60 K で出現する新たなスペクトルは $5^7Fe^{III}O_6$ (*S* = 5/2) に帰属されるスペクトルである。

ところが、合成条件が 40[°]Cの場合、170 K におけるスペクトルは、⁵⁷Fe^{III}S₆ (S = 1/2)に 帰属されるスペクトルと ⁵⁷Fe^{II}O₆ (S = 2)に帰属されるスペクトルがほぼ1:1の割合で共 存しており、合成の温度条件に著しく依存していることが分かる。これは、96%に濃縮し た ⁵⁷Fe を用いて(n-C₃H₇)₄N[⁵⁷Fe^{II}Fe^{III}(dto)₃]を合成して ⁵⁷Fe メスバウアー分光を行ったこ とにより明らかになったことである。なお、合成条件が 40[°]Cの場合のスペクトルは ⁵⁷Fe を濃縮しないで合成した(n-C₃H₇)₄N[Fe^{II}Fe^{III}(dto)₃]のスペクトルと殆どかわらない。なお、 合成の温度を変えても 120 K 付近で電荷移動存転移が起こるため相転移温度前後でスペ クトルが大きく変化する。

Fig. 4. ⁵⁷Fe Mössbauer spectra of $(n-C_3H_7)_4N[^{57}Fe^{II}Fe^{III}(dto)_3]$ synthesized at 10°C and 40°C.

Fig. 5 は溶媒をメタノール、合成温度条件を 30℃および 40℃に設定して合成した $(n-C_3H_7)_4N[Fe^{II57}Fe^{III}(dto)_3]$ の⁵⁷Fe メスバウアースペクトルの比較である。合成条件が 30℃ の場合、200 K におけるスペクトルは、⁵⁷Fe^{III}S₆ (S = 1/2)に帰属される小さな四極子分裂 のあるダブレットが主成分である。なお、合成条件が 30℃で合成した $(n-C_3H_7)_4N$ [Fe^{II}⁵⁷Fe^{III}(dto)₃]のスペクトルで、60 K で出現する新たなスペクトルは ⁵⁷Fe^{III}S₆ (S = 0)に帰属さ れるスペクトルである。

Fig. 5. ⁵⁷Fe Mössbauer spectra of $(n-C_3H_7)_4N[Fe^{II} {}^{57}Fe^{III}(dto)_3]$ synthesized at 30°C and 40°C.

ところが、合成条件が 40[°]Cの場合、170 K におけるスペクトルは、⁵⁷Fe^{III}S₆ (S = 1/2)に 帰属されるスペクトルと ⁵⁷Fe^{II}O₆ (S = 2)に帰属されるスペクトルがほぼ1:1の割合で共 存しており、合成の温度条件に著しく依存していることが分かる。なお、合成条件が 40[°]C の場合、(n-C₃H₇)₄N[Fe^{II 57}Fe^{III}(dto)₃]のスペクトルは(n-C₃H₇)₄N[⁵⁷Fe^{II}Fe^{III}(dto)₃]のスペクト ルと殆どかわらない。なお、(n-C₃H₇)₄N[Fe^{II 57}Fe^{III}(dto)₃]において、合成の温度を変えても 120 K 付近で電荷移動存転移が起こるため相転移温度の前後でスペクトルが大きく変化 する。

Fig. 6 は、溶媒および合成温度の条件を変えて合成した($n-C_3H_7$) $_4$ N[Fe^{II 57}Fe^{III}(dto)₃]にお ける ⁵⁷Fe メスバウアースペクトルの変化を示したものである。溶媒をメタノール、合成 温度条件を-20℃で合成した場合、⁵⁷Fe^{III}S₆ (S = 1/2)サイトが 87.5%、⁵⁷Fe^{II}O₆ (S = 2)サイト が 8%を占めている。溶媒をメタノール、合成温度条件を-20℃から 25℃に上げて合成し た場合、⁵⁷Fe^{III}S₆ (S = 1/2)サイトが 78.0%に減少し、⁵⁷Fe^{II}O₆ (S = 2)サイトが 8.0%から 15.8% に増加している。次に合成温度条件を 25℃に固定し、溶媒をメタノールからメタノール と水の混合溶媒 (3:2) で合成した場合、⁵⁷Fe^{III}S₆ (S = 1/2)サイトと ⁵⁷Fe^{II}O₆ (S = 2)サイ トの比率が 44.5%と 45.5%となり、⁵⁷Fe を濃縮しないで合成した($n-C_3H_7$) $_4$ N[Fe^{II}Fe^{III}(dto)₃] のスペクトルと殆ど変わらないことが分かった。

Fig. 6. ⁵⁷Fe Mössbauer spectra of $(n-C_3H_7)_4N[Fe^{II} {}^{57}Fe^{III}(dto)_3]$ at 300K under various synthesis conditions [5].

以上述べたように、非対称配位子である dto を架橋とする鉄混合原子価錯体 (n-C₃H₇)₄N[Fe^{II}Fe^{III}(dto)₃]において、Fe^{II} および Fe^{III} を別々に ⁵⁷Fe で濃縮した錯体 (*n*-C₃H₇)₄N[⁵⁷Fe^{II}Fe^{III}(dto)₃]および(*n*-C₃H₇)₄N[Fe^{II 57}Fe^{III}(dto)₃]の⁵⁷Feメスバウアースペクト ルが合成温度および合成温度に依存することを見出した。この系は、架橋配位子が非対 称であり、dtoの配位原子である硫黄原子および酸素原子は柔らかい塩基および硬い塩基 であることから、硫黄原子および酸素原子はそれぞれ低原子価の Fe^{II} および高原子価の Fe^{III}に結合する傾向がある。このため、合成温度および溶媒の条件によっては溶液中に おいて、dto が 180°反転して連結異性(Fe^{III} - $S_2C_2O_2$ - Fe^{II} → Fe^{III} - $O_2C_2S_2$ - Fe^{II}) を部分的に起こすことが考えられる。この連結異性は溶液中において、[Fe^{III}(dto)₃]の Fe^{III} -S₂C₂O₂配位結合を切って dto が 180°反転して Fe^{III}-O₂C₂S₂の結合を形成するため、活性 化エネルギーを超える必要がある。合成温度を高くすることにより連結異性の割合が増 加するのはこのためである。連結異性(Fe^{III} - O₂C₂S₂ - Fe^{II})を起こした状態で錯体が 析出すると、 $Fe^{II}S_6$ (S = 0)および $Fe^{III}O_6$ (S = 5/2)の状態が形成されるが、この状態は 120 K 以下でのみ安定な状態であり、室温付近では熱力学的に不安定なため、固体状態で電荷 移動を起こし、Fe^{III}S₆ (S = 1/2)および Fe^{II}O₆ (S = 2)となる。この連結異性とそれに連鎖す る電荷移動現象を Fig.7 に示す。

Fig. 7. Schematic representation of the linkage isomerization and its successive charge transfer under the precipitation process of $(n-C_3H_7)_4N[Fe^{II}Fe^{III}(dto)_3]$.

4. 結論

配位子場がスピンクロスオーバー領域にある混合原子価錯体では、系全体の自由エネ ルギーが最も安定になるようにスピンと電荷が連動して起こる新しい型の相転移現象が 期待される。 実際、我々は、 強磁性を示す鉄混合原子価錯体 $(n-C_nH_{2n+1})_4N$ $[Fe^{II}Fe^{III}(dto)_3](dto = C_2O_2S_2)$ において室温から温度を下げてゆくと、この物質が絶縁体で あるにも係わらず電子が Fe^{II}から Fe^{III}に一斉に集団移動する電荷移動相転移をメスバウ アー分光で明らかにした。この系は、架橋配位子が非対称であり、dtoにおける配位原子 の硫黄原子および酸素原子はそれぞれ柔らかい塩基および硬い塩基であることから、反 応溶液中において dto が反転して連結異性を部分的に起こすことが考えられるが、⁵⁷Fe を 96%に濃縮した純鉄を出発原料として用い、酸素原子が配位した Fe^{III}サイトを ⁵⁷Fe で 置換した錯体(n-C_nH_{2n+1})₄N[⁵⁷Fe^{II}Fe^{III}(dto)₃]および硫黄原子が配位した Fe^{III}サイトを ⁵⁷Fe で置換した錯体(n-C_nH_{2n+1})₄N[Fe^{II 57}Fe^{III}(dto)₃]を合成し、連結異性の生じる条件を定量的に 調べた。その結果、合成温度および溶媒の条件によっては溶液中において、架橋配位子 の dto が 180°反転して連結異性 (Fe^{III} - S₂C₂O₂ - Fe^{II} → Fe^{III} - O₂C₂S₂ - Fe^{II})を部分 的に起こすことを明らかにした。また、連結異性 (Fe^{III} - O₂C₂S₂ - Fe^{II})を部分 的に起こすことを明らかにした。また、連結異性 (Fe^{III} - O₂C₂S₂ - Fe^{II})を起こした状 態で錯体が析出すると、Fe^{II}S₆(S = 0)および Fe^{III}O₆(S = 5/2)の状態が形成されるが、この 状態は 120 K 以下でのみ安定な状態であり、室温付近では熱力学的に不安定なため、固 体状態で電荷移動を起こして Fe^{III}S₆(S = 1/2)および Fe^{II}O₆(S = 2)となることを明らかにし た。

この研究は、影澤幸一博士、岡澤厚博士、榎本真哉博士、糸井充穂博士、木田紀行博士をはじめ多くの共同研究者との研究成果であり、ここに感謝を申し上げる。

参考文献

- N. Kojima, W. Aoki, M. Itoi, Y. Ono, M. Seto, Y. Kobayashi and Yu. Maeda, Solid State Commun., 120, 165 (2001).
- [2] M. Itoi, Y. Ono, N. Kojima, K. Kato, K. Osaka and M. Takata, Eur. J. Inorg. Chem., 1198 (2006).
- [3] N. Kojima, M. Enomoto, N. Kida and K. Kagesawa, Materials 3, 3141 (2010).
- [4] M. Itoi, A. Taira, M. Enomoto, N. Matsushita, N. Kojima, Y. Kobayashi, K. Asai, K. Koyama, T. Nakano, Y. Uwatoko and J. Yamaura, *Solid State Commun.*, 130, 415 (2004).
- [5] K. Kagesawa, N. Kida, Y. Ono, M. Enomoto and N. Kojima, J. Phys.: Conf. Ser., 217, 012034 (2010).

スピネル型化合物中¹¹¹Cdの核スピン緩和

Nuclear Spin Relaxation of ¹¹¹Cd in a Spinel Compound

金大理工¹、一関高専²、京大原子炉³

佐藤 渉¹、小松田沙也加²、大久保嘉高³ W. Sato¹, S. Komatsuda², and Y. Ohkubo³ ¹Institute of Science and Engineering, Kanazawa Univ. ²National Institute of Technology, Ichinoseki College ³Research Reactor Institute, Kyoto Univ.

<u>1. はじめに</u>

スピネル型酸化物(AB₂O₄)は、その構成金属元素や占有サイトによって多様な電気的・磁気的 性質を示すため、スピントロニクスやドラッグデリバリーシステム、充電式電池など多岐にわたる 分野での応用が期待されている物質である。スピネル型酸化物を新しい機能性材料として適用する ためには、特徴的な物性の発現とその制御が重要となる。本研究では、スピネル型酸化物に不純物 を導入することによって新しい機能を発現させることを目指している。これまでの研究において、 最も単純な組成で自然界に存在する四酸化三鉄(マグネタイト)を対象として、そのマトリックス 中に放射性の^{111m}Cd(\rightarrow ¹¹¹Cd)と¹¹¹In(\rightarrow ¹¹¹Cd)を極微量の不純物として導入し、これらをプローブとす る摂動角相関(PAC)法によってそれぞれの不純物の占有サイトと存在状態の同定を試みた[1]。室 温では、両プローブともAサイトを占有していることを示す結果が得られた。しかし¹¹¹In(\rightarrow ¹¹¹Cd) では、キュリー温度(858 K)以上での測定においてBサイトに存在する確率が生じ、温度と共に その確率が上昇する現象が観測された。これは不純物イオンのサイト移動が磁気転移に伴って誘起 された現象とも考えられるため、イオン伝導と磁気転移との相関を調べる上で非常に興味深い結果 である。本研究では、他のスピネル型化合物においても同様に不純物のダイナミクスが観測される か否かを調べることを目的として、インジウム酸カドミウム(CdIn₂O₄)を対象に実験を行った。

<u>2. 実験</u>

CdIn₂O₄の粉末試料は次に述べる固相反応で合成した。CdO に等しい物質量の In₂O₃を混合し、 錠剤成型後に空気中で 1373 K で焼結した。その後焼結試料について粉末X線回折測定を行った結 果、スピネル型の結晶構造由来の回折ピークのみを示すパターンが得られ、目的とする試料が合成 されていることを確認した。

合成した試料に 100 kBq の¹¹¹In(→¹¹¹Cd)塩酸溶液を滴下し、空気中で再び 1373 K で焼成し、PAC 測定を行った。^{111m}Cd(→¹¹¹Cd)プローブは、京大原子炉において ¹¹⁰Cd で濃縮した CdO に中性子を照 射することによって生成した。この放射性の粉末 Cd(^{111m}Cd)O を合成試料と混合し、錠剤成型後に 空気中で 1373 K で焼結して試料中にプローブを拡散させ、PAC 測定を行った。両プローブの壊変 図を Fig. 1 に示す。PAC 測定には BaF₂シンチレータによる従来の 4 検出器法を採用した。本研究 ではカスケード y 線の角度 θ および y₁ – y₂の放出時間差 t における遅延同時係数値 N(θ , t)を次の(1) 式で処理することによって、y 線の放出方向の異方性の時間変動 A₂₂G₂₂(t)を得た。

$$A_{22}G_{22}(t) = \frac{2[N(\pi,t) - N(\pi/2,t)]}{N(\pi,t) + 2N(\pi/2,t)}.$$
(1)

ここで A₂₂は角相関係数でカスケード y 線の異方性の大きさを表し、G₂₂(t)は時間微分摂動係数で、 プローブ核と核外場との相互作用によって生じる摂動の情報を含むパラメータである。

Fig. 1. Simplified decay schemes of ¹¹¹Cd arising from ¹¹¹mCd and ¹¹¹In.

3. 結果と考察

i)¹¹¹In(→¹¹¹Cd)プローブの結果

Fig. 2 に CdIn₂O₄中に導入された¹¹¹In(→¹¹¹Cd)プ ローブの室温での PAC スペクトルを示す。スペク トルは、核外電荷がプローブ核位置に作る電場勾配 との電気四重極相互作用を反映した周期的パター ンを示している。従って、次の(2)式に示す時間微 分摂動係数を用いてスペクトルの解析を行った。

$$G_{22}(t) = \sigma_{2,0} + \sum_{n=1}^{3} \sigma_{2,n} \cos(\omega_n t)$$
(2)

Fig. 2. PAC spectrum of ${}^{111}In(\rightarrow {}^{111}Cd)$ in CdIn₂O₄ obtained at room temperature.

ここで $\sigma_{2,n}$ は非対称パラメータ η の関数であり、 ω_n は、例えば $\eta = 0$ の場合に $\omega_1 = 6\omega_Q$ 、 $\omega_2 = 12\omega_Q$ 、 $\omega_3 = 18\omega_Q$ として記述できる電気四重極周波数 ω_Q に関係する周波数である。また、解析では ω_n に分 布 δ を仮定した。スペクトルの解析結果を Table 1 に示す。得られた電場勾配(V_{zz})の値は、 ^{III}In(\rightarrow ^{III}Cd)プローブが B サイトを占有していることを示唆している。我々は先行研究において Fe₃O₄中で ^{III}In(\rightarrow ^{III}Cd)プローブは室温では A サイトを特異的に占有することを報告したが[1]、本 研究では異なる結果が得られた。CdIn₂O₄は正スピネルであり、In イオンは B サイトを占有してい ることを考慮すると、本研究の結果はむしろ予測に合致する結果である。

Table 1. Hyperfine interaction parameter values obtained by a least-squares fit on the room-temperature PAC spectrum of $^{111}In(\rightarrow ^{111}Cd)$ in CdIn₂O₄.

ω_Q (Mrad s ⁻¹)	$ V_{zz} (10^{21} \mathrm{V m}^{-2})$	η	δ (%)
14.04(1)	4.8(8)	0.10(3)	1.2(2)

ii)^{111m}Cd(→¹¹¹Cd)プローブの結果

CdIn₂O₄中に導入された^{111m}Cd(\rightarrow ¹¹¹Cd)プローブの室温および77KにおけるPAC スペクトルを得た。B サイトを占有する¹¹¹In(\rightarrow ¹¹¹Cd)プローブに対して^{111m}Cd(\rightarrow ¹¹¹Cd)プローブは同一元素である Cd が占有するA サイトに取り込まれると予想される。A サイトは四面体位置であるため、一般に 電場勾配は極めて小さいと考えられ[2]、先行研究の結果からも[1]、無摂動に近いスペクトルが得 られると予想した。しかし、得られたスペクトルは予測と異なり指数関数的な減衰を示した。プロ ーブ核に摂動を与える核外電荷が速い相対運動によってプローブ核スピンに揺動を与える場合、角 相関スペクトルは動的摂動によって指数関数的に減衰することが知られている[3]。本研究では、ス ペクトルが速く緩和する現象が観測されたため、核外場の比較的遅い相対運動を仮定して、次の(3) 式で与えられる時間微分摂動係数による解析を行った[4]。

$$G_{22}(t) = \exp(-t/\tau_c) G_{22}^{\text{static}}(t)$$
(3)

(3)式において、*c*_cは相関時間であり、これを含む指数関数減衰項が静的摂動係数に掛かっている。 (3)式による解析結果はスペクトルをよく再現した。この結果は、CdIn₂O₄中のAサイトのCd核スピンがPAC測定の観測窓の時間スケールで核外場の相対運動によって揺動していることを示唆しており、予想とは全く異なる結果である。さらに、この核スピン緩和現象が核外電荷の熱運動による場合、スペクトルに温度依存性が現れると考えられるが、パラメータの解析値には顕著な温度変化はなく、このことも想定外の結果である。観測された核スピン緩和を誘起するメカニズムについて、現在考察中である。今後、より広い温度範囲でPAC測定をして温度依存性の有無を確認する。また、この現象が他のスピネル化合物においても同様に観測されるかどうか検討する予定である。

【参考文献】

- W. Sato, T. Ida, S. Komatsuda, T. Fujisawa, S. Takenaka, and Y. Ohkubo, J. Appl. Phys. **129**, 145104 (2016).
- [2] A. F. Pasquevich, Phys. Status Solidi B 242, 1771 (2005).
- [3] A. Abragam and R. V. Pound, Phys. Rev. 92, 943 (1953).
- [4] W. Sato, K. Sueki, K. Kikuchi, S. Suzuki, Y. Achiba, H. Nakahara, Y. Ohkubo, K. Asai, and F. Ambe, Phys. Rev. B 58, 10 850 (1998).

CaF₂ に注入された Fe 原子のインビーム・メスバウアースペクトル In-Beam Mössbauer Spectroscopy of ⁵⁷Fe after ⁵⁷Mn Implantation into CaF₂

電通大院¹,理研²,東理大理³,ICU⁴,阪大理⁵,金沢大理工⁶,北陸大⁷,放医研⁸ 高濱矩子¹,小林義男^{1,2},山田康洋³,久保謙哉⁴,三原基嗣⁵,佐藤渉⁶,長友傑², 宮崎淳⁷,佐藤眞二⁸,北川敦志⁸

N. Takahama ¹, Y. Kobayashi^{1, 2}, Y. Yamada³, M. K. Kubo⁴, M. Mihara⁵, W. Sato⁶, T. Nagatomo², J. Miyazaki⁷, S. Sato⁸ and A. Kitagawa

¹Univ. Electro-Communications, ²RIKEN Nishina Center, ³Faculty of Science, Tokyo Univ. Sci., ⁴ICU, ⁵Department of Physics, Osaka Univ., ⁶Institute of Science and Engineering, Kanazawa Univ., ⁷Hokuriku Univ., ⁸National Institute of Radiological Science

<u>1. はじめに</u>

インビーム・メスバウアー分光法は、重イオン加速器で調製した短寿命核 ⁵⁷Mn ($T_{1/2} = 1.45$ min)を固体試料に直接注入し、⁵⁷Mn の β 壊変で生成した ⁵⁷Fe が放出するメスバウアー γ 線を その場で計測する実験手法である.物質中における孤立した ⁵⁷Fe 原子の電子状態や原子価状態、 占有位置、動的振る舞いに関する情報をオンラインで得ることが可能である [1,2].

レンズなどの光学材料として用いられるフッ化カルシウム CaF₂は,高純度であることが要求 される.製造時や保存時に極微量に混入する典型的な不純物元素として Fe 原子があげられる. Fe 原子の挙動への知見は CaF₂に含まれる極微量不純物イオンについての理解を深めることに 繋がる.本稿では,CaF₂を試料としたインビーム・メスバウアースペクトルを得たので報告す る.

2. 実験

実験は,放射線医学総合研究所重イオン加速器 HIMAC で行った.安定核 ⁵⁸Fe (核子あたり 500 MeV)の一次ビームを生成標的の ⁹Be 金属板 (厚さ 27 mm)に衝突させると入射核破砕反応が起こる.生成した数多くの核破砕片から,質量分離装置で1個のプロトンが剥ぎ取られた ⁵⁷Mn を2段の電磁石で分離収束後最適化して試料へ導いた.適当な厚さの Al 減衰板とデグレーダを通過させ,測定試料内で停止させた.クライオスタット中の金属基板に 2 cm²×2 mm 厚の単結晶 CaF₂を設置し,13,20,40,60,77,119,150,169,190,230K の計 10 点の試料温度で測定した.

メスバウアーγ線の測定は, メスバウアー効果を利用した 平行平板電子なだれ型検出器 PPAC で行なった. PPAC 内部 の吸収体 57Fe 富化ステンレス スチールが,⁵⁷Mnのβ⁻壊変後 に生成する 57Fe の第一励起準 位から放出される 14.4 keV の γ線を共鳴吸収した後, 脱励 起の際に内部転換電子を放出 する. この内部転換電子をア ナログ信号に変換することで インビーム・メスバウアース ペクトルを得ることができる. さらに,4つのプラスチックシ ンチレータ(Bicron 製, 厚さ 0.5 mm)を試料の周囲に配置

Fig.1. Decay scheme of ⁵⁷Mn.

した. PPAC 直前のプラスチッ Fig. 2. Schematic layout of in-Beam Mössbauer Spectrometer [4]. クシンチレータで ⁵⁷Mn の β -壊変に伴う β 線を計測し, β - γ 反同時計数法によりバックグラウ ンドを低減するとともに, β - γ 同時計数法によりイベントと時間のデータを同時に蓄積した[3].

3. 結果と考察

3.1. 全時間積分メスバウアースペクトル解析

 CaF_2 の結晶構造を Fig. 3.に示す. Ca^{2+} が面心立方格子 をつくり、その間隙の正四面体4配位位置に Fが入る構 造をしている. 立方晶系の空間群 F_{m3m} の構造で、格子 定数は a = 5.46 Åである.

試料温度 13K での全時間積分メスバウアースペクト ルを Fig. 2 に示す.温度変化に伴う各成分を検討して第 一近似として 3 つの doublet (D1, D2, D3)で解析した.各 温度における線幅については、3 成分とも同じ値として フィッティングを行なった.得られたメスバウアーパラ メータの,他の測定温度で矛盾が生じない解析をするこ

Fig. 3. Crystal structure of CaF₂.

とができた.メスバウアースペクトルを測定したすべての時間積分メスバウアースペクトルを Fig.4に,それぞれのメスバウアーパラメータを Table 1 に示す.

Fig. 4. In-beam Mössbauer spectra of ⁵⁷Fe obtained on ⁵⁷Mn implantation in CaF₂ between 13 and 230K. The isomer shift is given relative to α -Fe at room temperature. The sign of velocity is opposite to the conventional absorption experiment.

		obtained at 13	K	calculated		
	I.S. [mm/s]	Q.S. [mm/s]	Intensity [%]	I.S. [mm/s]	Q.S. [mm/s]	Site
D1	1.62(3)	3.22(8)	57.06	1.45	4.116	Ca ²⁺ substitutional
D2	1.62(5)	2.03(12)	24.46	1.22	1.981	interstitial
D3	0.94(10)	1.85(20)	18.48	-	-	-

Table 1. Obtained and calculated Mössbauer parameters

3.2. DFT 計算との比較による配位環境の判断

DFT 計算は, 混成汎関数 B3LYP, 基底関数 TZVP および TZV/J, Fe については B3LYP CP(PPP) を適用して行った [5]. メスバウアーパラメータと DFT 計算より, D1 は Ca²⁺位置を置換して Fイオン8個に取り囲まれた⁵⁷Fe²⁺ (HS), D2 は fcc 構造における中心の格子間隙位置にある ⁵⁷Fe²⁺ (HS)であると説明できた. D3 については計算中である.

3.3 メスバウアーパラメータと温度変化

アイソマーシフト,四極子分
 裂,面積強度比のそれぞれの温
 度変化を Fig. 5. に示す. 直線は
 eye guide である.

アイソマーシフトは、二次ド ップラーシフトに従って、温度 上昇につれて負から正の方向へ とシフトした.13K から 230K でアイソマーシフトの変化は +0.28mm/s (D1)であった.

面積強度は、13K では D1 と D2 の面積強度比が 3:1 である が、160K 付近では逆転し 230K では 2:3 となった.面積強度の 温度変化から、低温では Fe 原子 は、電荷を補うように Ca²⁺置換 位置を占有するが、温度上昇に ともなって格子間隙位置に移行 することが実験より明らかとな った.高温では格子欠陥やひず みの再配列が起こり、より安定 な格子間隙に Fe²⁺が入ると考え た.Fe は Ca²⁺サイトから格子間 隙位置に追い出されることが実 験から明らかとなった.

四極子分裂は,温度上昇にと

Fig. 5. Temperature dependences of (a) isomer shifts,(b) quadrupole splittings and (c) relative area intensities of Fe atoms.

もなう格子欠陥の修復や原子の再配列のために, 3.22 mm/s (13K, D1)から 1.86 mm/s (230K, D1) へ値が減少することと矛盾しない.

<u>4. まとめ</u>

CaF₂に短寿命核⁵⁷Mn をイオン注入して,13~230K のインビーム・メスバウアースペクトルを測定した.D2 成分である格子間隙位置を占める Fe²⁺の面積強度が温度に対してほぼ比例して増加し,D1 成分である Ca²⁺を置換した成分は減少した.極微量 Fe イオンの CaF₂での占有位置に関する知見を得ることができた.D3 成分の解釈と温度変化ならびに時間分解測定について検討している.

なお、本研究の一部は科研費基盤 C16K05012 の補助を受けた.

5. 参考文献

[1] Y. Kobayashi, "Chapter 3. In-Beam Mössbauer Spectroscopy Using a Radioactive Beam and a Neutron Capture Reaction", in Mössbauer Spectroscopy – Applications in Chemistry, Biology, Nanotechnology, ed. by V. K. Sharma, G. Klingelhöfer, and T. Nishida, John Wiley & Sons, New Jersey (USA) p.58-70 (2013).

- [2] 小林義男, 表面科学, 31, 230-236 (2010).
- [3] Y. Kobayashi et al., Hyp. Int., 198, 173–178 (2010).
- [4] T. Nagatomo et al., Hyp. Int., 204, 125–128 (2012).
- [5] M. Römelt et al, Inorg. Chem, 48, 784-785 (2009).

LaBr₃シンチレータを用いた励起準位の寿命測定

Lifetime Measurement of Excited Levels Using LaBr₃ Scintillator

名大院工¹、名大アイソトープ総合センター² 大野臣悟¹、小島康明²、柴田理尋² S. Ohno¹, Y. Kojima², and M. Shibata² ¹Graduate School of Engineering, Nagoya University ²Radioisotope Research Center, Nagoya University

<u>1.はじめに</u>

原子核の励起準位の寿命を測定する方法としてβ-γ遅延同時計数法がある。この方法では、測定 したい励起準位に崩壊する際に放出されるβ線と、そこから放出されるγ線をそれぞれ測定し、検 出器の応答時間の差より寿命測定を行う。

LaBr₃検出器は数百 keV のγ線を測定する際、エネルギー分解能はシンチレータでは最もよく (¹³⁷Cs の 662 keV で約 3%)、シンチレーション光の減衰時間も 16 ns と短いため広く使用されてい る。しかし、低エネルギーのγ線(もしくは X 線)を測定した場合の寿命測定に使用された例は少な い。最近、¹⁵²Sm の 121 keV(*T*_{1/2}=1.4 ns)の準位について 40 keV の KX 線を測定し、時間特性を求 めた例[1]と ¹⁰⁹Pd の 291.4 keV(*T*_{1/2}=136.5 ps)の準位について 178 keV のγ線を測定した例[2]が報告 されている。当研究室の先行研究においても、¹²⁵Te の X 線とγ線 35keV の励起準位の半減期を 1.453(11) ns と定めた例[3]がある。LaBr₃検出器で 100 keV 以下のγ線を測定し、サブナノ秒の半減 期を測定した例はほとんどない。そこで、この領域での寿命測定を行うことを本研究での目的と した。本研究では 80 keV のγ線を放出し、その準位の半減期が 0.454(40) ns [4]という準位をもつ ¹³¹Xe(¹³¹I のβ-崩壊の娘核種)を対象とし、80、341 及び 364 keV の 3 つの励起準位の寿命測定を行った。

2.実験

2.1. 測定核種

本実験では¹³¹Xeの前述した3つの励起準位の半減期を測定した。評価値は80keVの準位 について0.454(40)ns[4]である。これは2つの報告値0.496(21)ns[5]と0.416(20)ns[6]の加重 平均であるが、これら2つは不確かさを超えて異なっている。341及び364keVの準位の報告 値も同様に異なっている[6-8]。過去の研究では、プラスチックシンチレータでγ線を測定し、 半減期を決めている。プラスチックシンチレータではエネルギー分解能が悪く、γ線のエネル ギー弁別が正しく行えていない可能性があるため、これがばらつきの一因と考えられる。

本実験では ¹³¹I の β -崩壊に伴う β 線と γ 線を、それぞれプラスチックシンチレータと LaBr₃検 出器で測定し、その時間差を測定した。さらに、 γ 線弁別用の Ge 検出器を追加した β - γ - γ 遅延 同時計数法によってエネルギー弁別性を向上させて寿命測定を行った。

<u>2.2. 測定系</u>

プラスチックシンチレータ(PilotU, 1 mm⁴, 50.8 mm⁴, 光電子増倍管 PMT: 浜松ホトニクス 2431-51)、LaBr₃検出器(1.5 inch⁴, 1.5 inch⁴, PMT: 浜松ホトニクス R9420-100)、38%同軸型 Ge 検出器の3台の検出器を三角形状に配置し、中心に¹³¹I線源を設置した。線源と検出器の距離 はそれぞれ1 cm、2 cm、2 cm とした。LaBr₃検出器とプラスチックシンチレータの信号をそ れぞれコンスタントフラクションディスクリミネーター (CFD、Canberra 2126)で波形処理 し、時間差波高変換器(TAC、ORTEC 567)を用いて時間分布曲線を得た。それを Ge 検出器を 含む3つのエネルギー信号とともに、タイムスタンプ付きのリストデータとして収集した。 この時 TAC のスタート信号をプラスチックシンチレータ、ストップ信号を LaBr₃検出器とし た。プラスチックシンチレータ側の CFD は 30 cm の遅延ケーブルを、LaBr₃側には 130 cm の ものを接続して、即時曲線の時間分解能が最適となるようウォークを調節した。¹³⁷Cs の内部 転換電子を用いて、プラスチックシンチレータのエネルギー較正を行った。

2.3. 時間特性

前述の調整後¹³⁴Csを測定し、コンプトン連続部分にゲートをかけ、即時曲線の時間分解能 と重心位置のエネルギー依存性を Fig.1 のように得た。

スロープ法では経験的に時間分解能の1/3 までの半減期を求められるので、測定対象の半減期 に対して十分な時間分解能であることを確認した。重心位置のエネルギー依存性が滑らかで あることも確認した。

<u>2.4.¹³¹Iの測定</u>

テフロンシートに¹³¹I(*T*_{1/2}=8.02 d)の液体線源(NaI 水溶液)を垂らし、乾燥後に、ポリエチレン袋に封入したものを¹³¹I 線源とした。測定開始時に 50 kBq となるように調製し、8 日ごとに新たな線源に交換して約 30 日間測定した。LaBr₃検出器及び Ge 検出器で測定したエネルギースペクトルを Fig.2 に示す。

<u>2.5.¹³¹Xeの励起準位の寿命測定</u>

2.5.1. 80 keV の準位

¹³¹Iの崩壊図式の一部を Fig.3 に示す。 80 keV の準位から放出される 80 keV の %線を LaBr₃検出器で測定し、この準位 とカスケード関係にある 284 keV のγ線 を Ge 検出器で、その準位へ遷移するβ 線をプラスチックシンチレータで測定 し、β-γ-γ遅延同時計数を行った。その 結果、Fig.4 の黒線の時間分布曲線が得 られた。黒丸の部分(2070~2160 ch)を最 小二乗法でフィッティングし、半減期 を 0.468(15) ns と決定した。

Fig.2 Energy spectra of 131 I measured with LaBr₃(black) and Ge detectors (red).

Fig.3 A part of decay scheme of ¹³¹I.

2.5.2. 364 keV の準位

この準位の半減期を求めるにあたり、重心法を利用した。3 重遅延同時計数法によって得 られる時間分布曲線の重心位置は、経由する2つの準位の半減期の和を反映している。 そこで、Fig.3 のように80 keV のγ線をLaBr₃検出器で、それとカスケード関係にある643 keV のγ線をGe 検出器で測定し、723 keV の準位に遷移するβ線をプラスチックシンチレ ータで測定した。なお、723 keV の準位には寿命がないと報告されている[9]。これで得た 時間分布曲線(Fig.4 の赤線)と2.5.1 節で得た時間分布曲線(Fig.4 の黒線)の2つの時間分布 曲線の重心位置の差をとると、80 keV の準位の半減期は相殺され、364 keV の準位の半減 期が得られる。この重心位置の差より、この準位の半減期を50ps 程度と決定した。

2.5.3. 341 keV の準位

この準位の半減期を測定するには、この準位か ら放出される 177 keV のγ線を LaBr₃検出器で測 定する必要がある。しかし Fig.2 に示すよう に、LaBr₃検出器のエネルギースペクトル上に は 177 keV のγ線ピークは確認できなかった。そ こで 177 keV のγ線とカスケード関係にある 325 keV のγ線(Fig.3 参照)に Ge 検出器でゲートをか けた LaBr₃のスペクトルを得たところ、Fig.5 の 赤線のように 177 keV のγ線ピークが確認でき た。これをもとに適切に LaBr₃のゲート範囲を 定め、 β - γ - γ 遅延同時計数法によって Fig.6 の時 間分布曲線を得て、スロープ法より半減期 2.12(6) ns と決定した。

3.結果と考察

得られた実験データとこれまでの報告値及び評価値 を比較したものを Fig.7 に示す。

Fig.7 (a)より、本研究で得られた 80 keV の準位の半減 期は2つの報告値の中間で、評価値を支持する結果と なった。1962 年と1981 年の測定では、プラスチックシ ンチレータ2 台を用いて寿命測定をしている。この結 果に対して今回の測定はエネルギー弁別が優れた条件 で測定を行っているので、その点で信頼性の高い結果 を得ることができた。

Fig.7 (b)より、364 keV の準位について、不確かさは 大きいが、その範囲でこれまでの報告値、評価値と矛 盾のない結果(50 ps 程度)を得た。

Fig.7 (c)より、341 keV の準位については 1973 年の結 果を支持する結果となった。1973 年の測定は 177 keV

のγ線を Ge 検出器を用いて測定しており、1981 年の測定はプラスチックシンチレータを用いている。エネルギー分解能が高い Ge 検出器での測定の結果を支持していることから、エネルギーの弁別が重要であると考えられる。

Fig.5 Energy spectra of LaBr₃. Black spectrum is the projection with the plastic scintillator. Red spectrum is additionally gated by 325 keV γ -ray measured with Ge detector.

Fig.7 Comparison of previous value, evaluated value and this work about (a) the 80 keV level, (b) the 364 keV level and (c) the 341 keV level.

<u>4.まとめ</u>

本実験において、¹³¹Xe についてエネルギーを弁別し、80 keV 及び 341 keV の準位について信頼 性の高い半減期を決定した。80 keV 及び 364 keV の準位について、LaBr₃検出器で 80 keV のγ線を 測定することでサブナノ秒(0.468(15) ns)の半減期をスロープ法で、50 ps 程度の半減期を重心法で 決定することができた。LaBr₃検出器用いて 100 keV 以下の低エネルギー領域のγ線を測定するこ とで、サブナノ秒の半減期を測定可能であることがわかった。

参考文献

- [1] J. -M. Régis et al., Nucl. Instrum. Methods Phys. Res. A823, 72 (2016).
- [2] B. Bucher et al., Phys. Rev. C92, 064312 (2015).
- [3] H. Kamada et al., KURRI-EKR-18 (2016).
- [4] National Nuclear Data Center, ENSDF Web site.
- [5] R. S. Weaver, Can. J. Phys. 40, 1684 (1962).
- [6] S. C. Pancholi et al., Phys. Rev. C 24, 2337 (1981).
- [7] S. Gorodetzky et al., Nucl. Phys. 85, 529 (1966).
- [8] H. Engel et al., Z. Phys. 261, 343 (1973).
- [9] D. C. Palmer et al., J. Phys. G: Nucl. Phys. Vol.4, 1143 (1978).

KISS、超微細構造測定と質量測定の現状

Present Status of Hyperfine Structure Measurements and Mass Measurements at KISS

高エネルギー加速器研究機構和光原子核科学センター¹、筑波大数理物質科学研究科²、理化学研究 所仁科加速器研究センター³

宫武宇也¹、和田道治^{1,3}、渡邊裕¹、平山賀一¹、Peter Schury¹、小柳津充弘¹、垣口豊¹、

木村創大^{2,1,3}、向井もも^{2,1,3}、Murad Ahmed^{2,1}, Junyoung Moon⁴, and Jinhyung Park⁴

H. Miyatake¹, M. Wada¹, X.Y. Watanabe^{1,3}, Y. Hirayama¹, P. Schury¹, M. Oyaizu¹, Y. Kakiguchi¹,

S. Kimura^{2,1,3}, M. Mukai^{2,1,3}, M. Ahmed^{2,1}, J.Y. Moon⁴, and J.H. Park⁴

¹Wako Nuclear Science Center, High Energy Accelerator Research Organization

²Graduate School of Pure and Applied Sciences, Univ. of Tsukuba

³Riken Nishina Center, RIKEN

⁴RISP project, IBS, Korea

1. はじめに

KEK 和光原子核科学センター(WNSC)では、2016 年度より理研に設置した元素選択型質量分離器 (KEK Isotope Separation System: KISS)の共同利用を行っている。そこで開発された In-gas-cell レーザ 一分光法による超微細構造測定の概要と中性子過剰短寿命核の測定結果、更なる高精度測定に向け た開発状況を報告する。また、昨年から本格的測定が始まった多重反射型飛行時間測定式質量分析 器(Multi-Reflection Time-Of-Flight Mass Spectrograph: MRTOF-MS)による原子核質量の精密測定の現 状、韓国 IBS との共同研究のもとに整備が進んでいる KISS-MRTOF の開発状況を紹介する。

2. KISS における超微細構造測定

KISS¹⁾では、2016年の共同利用開始以来、重イオンビームによる多核子移行反応(Multi-Nucleon Transfer reaction: MNT)²⁾を利用して、生成・測定が困難であった重質量中性子過剰短寿命核に対す る分光研究の場を提供しており、崩壊核分光やレーザー核分光を駆使したユニークな研究成果が生 れている³⁾。特に KISS アルゴンガス中で捕獲・中性原子化された短寿命な放射性同位元素のイオ ン化に用いる 2 色のレーザー光を、そのまま利用する In-gas-cell レーザー分光では、Pt から Hf に 至る不揮発性元素の核モーメント、荷電半径シフト量測定などに威力を発揮している。これまでに、 ¹⁹⁹Pt や ¹⁹⁶⁻¹⁹⁸Ir の測定が行われた^{4.5)}。

In-gas cell レーザー分光では短寿命核原子の基底状態から中間状態へ励起させるレーザー光の波 長を変化させ、その後紫外レーザーによりイオン化された短寿命核の生成強度から超微細構造が得 られる。強度分布は励起された短寿命核イオンからのβ線及びγ線の崩壊強度を用いている⁵。図

66

Fig. 1 Hyperfine structures using 392 keV γ -rays (left) and total β -rays (right), respectively, decaying from produced, ionized, and separated radioactive isotope, ¹⁹⁹Pt. Blue lines in the right panel indicate resolved components of ^{199g}Pt and ^{199m}Pt from simultaneous analysis of both measured results.

1に¹⁹⁹Ptの測定例を示した。この同位元素には基底状態と424 keVの励起エネルギーを持つアイソ マー状態の存在が知られている。そこでアイソマーからの脱励起γ線(392 keV)のみを用いてアイソ マー状態の超微細構造を測定し(図1左)、その情報を用いてβ線強度分布における基底状態とア イソマー状態の分離に成功した(図1右)。得られた結果からは、基底状態と励起状態での核変形 共存が示唆されている⁴。

In-gas-cell レーザー分光では、KISS アルゴンガスセル中でのレーザーイオン化を利用するために、 有効レーザー周波数幅が広がり(~12 GHz)、超微細分岐した原子状態を分離できないため、高精度 な核磁気モーメントや四重極モーメント測定あるいはスピンパリティの決定が難しい。難点を克服 するため、レーザー照射域をガスセルの外側に配置した In-gas-jet レーザー分光の装置を準備してい る (図 2)。写真右側のアルゴンガスセル出口にはラバール・ノズルが組み込まれている。これに よって均一速度で放出されたガス中に高繰返し(10kHz)のレーザーを照射し、共鳴イオン化を実現

Fig. 2 In-gas-jet laser spectroscopy setup at KISS. Laval nozzle has been installed to realize a supersonic argon gas jet including radioactive neutral atoms. A S-shaped RFQ will guide ions, element-selectively ionized by 2 color lasers, towards a mass-separation area. する。この手法により有効レーザー周波数幅は 0.3 GHz 程度にまで狭帯域化される。2018 年には、 高精度なレーザ分光実験が可能となるであろう。

3. MRTOF-MS による原子核質量の網羅的測定

MTROF-MS は、低速同位体イオンをミラー電場内に閉じ込め、その周回飛行時間から質量の精密測定を行う装置である⁷⁾。10⁵以上の分解能を有し、15 ms 以内の測定時間で 100 個程度のイオン 検出により 100 keV 以下で重い質量数領域の原子核質量を決定できる。この装置は理研のガス充填 型反跳イオン分離器(Gas-filled Recoil Ion Sparator: GARIS II)の焦点面に設置され、これまでに4つの 超重核領域同位体を含む80以上の原子核質量の直接測定に成功した⁸⁾。同時に MRTOF 前段の He -イオンガイド入射部を冷却(~200 K)することによって、2価の重イオンが効率よく測定できること がわかった⁹⁾。今後の超重核領域の装置開発・質量測定の上で重要な知見である。

2017年度より開始された特別推進研究(代表:和田)では、理研 RIBF 施設の世界最高水準の短

寿命核生成能力をフルに利用して、短寿命原子核の網羅的質量測定を企画している(図3)。これ によって、超重核領域における原子核の安定性に対する基本データが蓄積されるとともに新たな超 重核同定への途が切り拓かれるとともに、天体における元素合成過程研究に含まれる核データの曖 昧さが大きく払拭されるものと期待される。韓国基礎科学院との共同研究でも、上記計画と軌を一 にして KISS が得意とする重質量中性子過剰短寿命核の質量測定(KISS-MRTOF)を目指しており、今 年度中に予備的実験を開始する。

参考文献

- Y. Hirayama et al., "On-line experimental results of an argon gas cell-based laser ion source (KEK Isotope Separation System)", Nucl. Instrum. Meth. B376, 52, 2016. and Y. Hirayama et al., "Doughnut-shaped gas cell for KEK Isotope Separation System", Nucl. Instrum. Meth. B412, 11, 2017.
- 2) X.Y. Watanabe et al., "Pathway for the production of neutron-rich isotopes around the N=126 shell closure", Phys. Rev. Lett. 115, 172503, 2016.
- 3) http://research.kek.jp/group/wnsc/en/publications.html
- Y. Hirayama et al., " In-gas-cell laser spectroscopy of the magnetic dipole moment of the N~ 126 isotope ¹⁹⁹Pt ", Phys. Rev. C96, 014307, 2017.
- 5) 向井もも、他、「KISS II:¹⁹⁶⁻¹⁹⁸Ir のレーザー共鳴イオン化核分光」日本物理学会、秋季大会、9/12-15、 宇都宮大 and M. Mukai et al., "High-efficiency and low-background multi-segmented proportional gas counter for β-decay spectroscopy", Nucl. Instrum. Meth. A884, 2018, 1.
- S. Raeder et al., "Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL", Nucl. Instrum. Meth B376, 2016, 382. and R. Ferrer et al., Nature Communications 8, 14520, 2016.
- 7) P. Schury et al., "First online multireflection time-of-flight mass measurements of isobar chains produced by fusion-evaporation reactions: Toward identification of superheavy elements via mass spectroscopy", Phys. Rev. C95, 011305R, 2017.
- 8) Y. Ito et al., "First direct mass measurements of hot-fusion transuranium isotopes with an MRTOF-MS", arXiv:1709.06468v1, S. Kimura et al., "Atomic masses of intermediate-mass neutron-deficient nuclei with 10~ppb-level precision via multireflection time-of-flight mass spectrograph", arXiv:1706.00186, and M. Rosenbusch et al., "New mass anchor points for neutron-deficient heavy nuclei from direct mass measurements of radium and actinium isotopes", arXiv: 1801.02823.
- P. Schury et al., "Observation of doubly-charged ions of francium isotopes extracted from a gas cell", Nucl. Instrum. Meth. B407, 160, 2017.

湿式法による亜鉛-鉄複合酸化物微粒子の合成

Synthesis of Zinc-Iron Oxide Nanocomposite by Wet Chemical Method

東理大¹、電通大²、理研³ 伊藤帆奈美¹、天笠翔太¹、西田直樹¹、小林義男^{2,3}、山田康洋¹ H. Ito¹, S. Amagasa¹, N. Nishida¹, Y. Kobayashi^{2,3}, and Y. Yamada¹ ¹Tokyo University of Science ²The University of Electro-Communications ³RIKEN

1. はじめに

鉄酸化物微粒子は優れた磁性体であり、磁性材料としてドラッグデリバリーや MRI の造影剤など 様々な分野で応用されている。オキシ水酸化鉄 FeOOH のなかで、 α -FeOOH、 β -FeOOH、 γ -FeOOH が反強磁性を示すのに対し、 δ -FeOOH のみがフェリ磁性を示すなど物性的に特に興味深い物質で ある[1]。また δ -FeOOH 微粒子は、超常磁性を示すことや光触媒へ応用できることが報告されてお り、さらなる研究が必要となっている[2,3]。しかし、 δ -FeOOH は自然界にほとんど存在せず、合成 手法も限られていた。これまでは、 δ -FeOOH は Fe(OH)2の急激な酸化によってのみ得られると考え られてきたが、我々は、Fe₃O₄ の酸化によって合成する新しい反応経路を見出し、液相中で簡便に 合成する手法を開発した[4]。

一方、鉄酸化物微粒子に鉄以外の金属をドープすると磁性構造を変化させることができ、中でも非磁性の亜鉛をドープするとその変化は顕著である[5-7]。亜鉛のドープ量によって磁性構造を制御できることが報告されており、亜鉛のドープ量を増加させると磁化や内部磁場は小さくなると予想できる。しかし、亜鉛をごく微量ドープした場合には、磁化が増大することが報告されている[5,7]。こうした亜鉛をドープした鉄化合物の磁気的性質を研究することは応用面から非常に重要である。本研究では、先行研究の合成手法を用いて亜鉛フェライトを合成し、それを酸化することで亜鉛・鉄複合酸化物微粒子を簡便に合成することを目的とした[4,8]。

2. 実験

塩化亜鉛と塩化鉄四水和物をモル比 7:3、6:4、5:5、4:6、3:7 で混合し、ゼラチン、酒石酸ナトリウム、水酸化ナトリウムとともに蒸留水に溶解した。超音波照射下でヒドラジン水溶液を滴下し、得られた沈殿を遠心分離したのち水とエタノールで洗浄、真空乾燥し、亜鉛・鉄複合酸化物微粒子を得た。ICP 発光分光 ICP-AES(SPS3520UV)、粉末 X 線回折 XRD(RIGAKU RINT2500 Cu-Kα線)、透過型電子顕微鏡 TEM(JEOL JEM-2100)、メスバウアー分光法(⁵⁷Co/Rh 線源)による分析を行った。

3. 結果と考察

Fig.1 に XRD の測定結果を示す。Zn/Fe=7/3、 6/4 の試料では ZnFe₂O₄(JCPDS Card No. 22-1012)または Fe₃O₄(JCPDS Card No. 19-629)に 一致するピークが見られた。ZnFe₂O₄ と Fe₃O₄ のパターンは非常に似ており、XRD だけでは 判別ができない。亜鉛の混合比が小さくなる と、Zn/Fe=4/6 の試料でδ-FeOOH(JCPDS Card No. 13-87)に一致するピークが現れた。 Zn/Fe=5/5 の試料では強度は弱いがδ-FeOOH に一致するピークが見られた。亜鉛の混合比 が最も小さい Zn/Fe=3/7 の試料ではδ-FeOOH に一致するピークのみが見られた。

Fig.2 に ICP-AES から求めた試料中の Zn/Fe モル比と出発物質の Zn/Fe モル比を示す。 XRD から金属亜鉛や亜鉛酸化物などの亜鉛 に由来するピークは見られなかったが、全て の試料に亜鉛を含有することを確認した。こ れより、Fe₃O₄や δ -FeOOH に確かに亜鉛がド ープされているといえる。

Fig.3 に TEM 像を示す。亜鉛の混合比の大き い Zn/Fe=7/3、6/4 の試料では 10 nm 程度の球 形の粒子が見られた。亜鉛の混合比が小さく なると Zn/Fe=5/5、4/6 の試料で、長軸 100 nm 程度の針状の粒子が現れ、亜鉛の混合比が最 小の Zn/Fe=3/7 の試料ではこの針状の粒子の みが見られた。文献では、Zn_xFe_{3-x}O₄ は球形[5]、 δ-FeOOH は針状の粒子であると報告されてお り[2]、本研究の結果と一致している。

球形粒子を仮定したシェラーの式を用いて、 XRD パターンから結晶子の大きさを見積も った。Zn/Fe=6/4 の試料では 10 nm と求めら れ、TEM の結果と一致した。一方、Zn/Fe=3/7 の試料では 11 nm と求められ、TEM の結果と は一致しなかった。これは、Zn/Fe=3/7 の試料 は球形粒子ではなく、実際には針状の粒子で あったためだと考えられる。

Fig. 1 XRD patterns for the (a), (b), (c), (d), and (e) samples synthesized from mixtures of Zn/Fe = 7/3, 6/4, 5/5, 4/6 and 3/7, respectively.

Fig. 2 Relationship between the Zn/Fe molar ratios of the nanoparticles measured using ICP-AES and the nominal molar ratios of the starting materials.

Fig. 3 TEM images of the (a), (b), (c), (d), and (e) samples synthesized from mixtures of Zn/Fe = 7/3, 6/4, 5/5, 4/6 and 3/7, respectively.

Fig.4a に Zn/Fe=6/4 の試料のメスバウアースペク トルを示す。また得られたパラメーターを Table 1 に示す。室温では超常磁性による1つのダブレッ トが観測された。低温では2組のセクステットと 内部磁場分布を持つ成分が観測された。2組のセ クステットはそれぞれ Zn_xFe_{3-x}O₄中の四面体サイ ト(A)、八面体サイト(B)に対応している。内部磁 場分布を持つ成分は、微粒子の表面や亜鉛ドープ による格子欠陥と考えた。

 $Zn_xFe_{3-x}O_4$ 中で亜鉛が占めるサイトは、バルクの 状態ではAサイトである。一方、微粒子では合成 方法などによって、A、Bの両サイトを占めるこ とが報告されている[9,10]。 Fe_3O_4 ではAサイトの 鉄とBサイトの鉄の面積比は $Fe_A/Fe_B=0.5$ である ので、 $Zn_xFe_{3-x}O_4$ ではメスバウアースペクトルの 面積比から見積もることができる[9]。Zn/Fe=6/4の試料では、 $Fe_A/Fe_B=1.7$ であるので、亜鉛は B サイトを占めていると考えられる。

Fig. 4 (a) Mössbauer spectra for the sample synthesized from mixtures of Zn/Fe=6/4 measured at 293 K and 7 K, and (b) the hyperfine magnetic field distribution.

Table 1 Mössbauer parameters obtained at 293 K and 7 K for the sample synthesized from mixtures of Zn/Fe=6/4.

Temperature K	Component	$\delta \text{ mm s}^{-1}$	$\Delta E q \text{ mm s}^{-1}$	<i>H</i> kOe	$\Gamma \mathrm{mm s}^{-1}$	Yields %
293	$Zn_{x}Fe_{3-x}O_{4}$	0.32(0)	0.61(0)		0.66(3)	100
	Zn _x Fe _{3-x} O ₄ (DHMF)	0.49(3)	0.06(7)	402*		21.5
7	Zn _x Fe _{3-x} O ₄ (i)	0.39(6)	-0.22(13)	486(1)	0.88(7)	49.5
	Zn _x Fe _{3-x} O ₄ (ii)	0.70(8)	0.42(16)	488(1)	0.73(10)	29.0

Fig.5a に Zn/Fe=5/5 の試料のメスバウアースペクトルを示す。また得られたパラメーターを Table 2 に示す。室温では超常磁性によるダブレットが観測された。低温では 3 組のセクステットと内部磁場分布を持つ成分が観測された。2 組のセクステットはそれぞれ Zn_xFe_{3-x}O₄ 中の A サイト、B サイトに対応していて、残りの 1 組は δ -FeOOH に対応している。内部磁場分布を持つ成分は、微粒子の表面や亜鉛ドープによる格子欠陥と考えた。また Fe_A/Fe_B=1.2 であり、Zn/Fe=6/4 の試料よりも小さくなった。これは、亜鉛の含有比が小さくなったためである。

100 293K 293K 293K 293K 96 -10 -10 -5 0 Velocity / mm s⁻¹

Fig. 6 Mössbauer spectra for the sample synthesized from mixtures of Zn/Fe=3/7 measured at 293 K and 7 K.

Fig. 5 (a) Mössbauer spectra for the sample synthesized from mixtures of Zn/Fe=5/5 measured at 293 K and 14 K, and (b) the hyperfine magnetic field distribution.

Temperature K	Component	$\delta \text{ mm s}^{-1}$	$\Delta Eq \text{ mm s}^{-1}$	H kOe	$\Gamma \mathrm{mm s}^{-1}$	Yields %
293	$Zn_xFe_{3-x}O_4$ δ - $Zn_xFe_{1-x}OOH$	0.37(0)	0.73(0)		0.56(1)	100
	Zn _x Fe _{3-x} O ₄ (DHMF)	0.49(2)	-0.07(4)	426*		23.0
14	Zn _x Fe _{3-x} O ₄ (i)	0.39(15)	0.25(30)	483(3)	0.78(10)	35.6
14	Zn _x Fe _{3-x} O ₄ (ii)	0.66(16)	0.27(33)	483(3)	0.73(12)	29.0
	δ-Zn _x Fe _{1-x} OOH	0.54(2)	0.00(3)	522(2)	0.45(8)	12.4

Table 2 Mössbauer parameters obtained at 293 K and 14 K for the sample synthesized from mixtures of Zn/Fe=5/5.

Fig.6a に Zn/Fe=3/7 の試料のメスバウアースペクトルを示す。また得られたパラメーターを Table 3 に示す。室温では超常磁性によるダブレットが観測された。低温では2組のセクステットが見られた。これらの成分は先行研究の δ-FeOOH 微粒子のよるパラメーターとほぼ同じであった。内部磁場が小さい成分は、微粒子の表面や亜鉛ドープによる格子欠陥であると考えられる。

Temperature K	Component	$\delta \text{ mm s}^{-1}$	$\Delta E q \text{ mm s}^{-1}$	H kOe	$\Gamma \mathrm{mm s}^{-1}$	Yields %
293	δ-Zn _x Fe _{1-x} OOH	0.36(1)	0.76(2)		0.66(3)	100
7	δ-Zn _x Fe _{1-x} OOH (i)	0.46(2)	-0.07(3)	477(1)	0.70(6)	37.6
1	δ-Zn _x Fe _{1-x} OOH (ii)	0.50(1)	0.01(2)	519(1)	0.75(4)	62.4

Table 3 Mössbauer parameters obtained at 293 K and 7 K for Zn/Fe=3/7.

先行研究から、 δ -FeOOH は前駆体である Fe₃O₄の急激な酸化によって生成することが見出されている[4]。本研究では、亜鉛の混合比の大きい Zn/Fe=7/3、6/4 の試料ではマグネタイト中の Fe²⁺の多く が Zn²⁺に置換され、急激な鉄の酸化が抑制されて Zn_xFe_{3-x}O₄ が生成したと考えられる。一方、亜鉛 の混合比が最小の Zn/Fe=3/7 の試料では、大気に暴露する前は Fe²⁺を多く含む Zn_xFe^{II}_{1-x}Fe^{III}₂O₄ の状態であり、大気に接すると急激に酸化して δ -Zn_xFe_{1-x}OOH が生成したと考えられる。

<u>4. 結論</u>

湿式法により亜鉛-鉄複合酸化物微粒子を簡便に合成した。XRD とメスバウアースペクトルから、 亜鉛の混合比の大きい試料では $Zn_xFe_{3-x}O_4$ 、亜鉛の混合比の小さい試料では δ- $Zn_xFe_{1-x}OOH$ が生成 した。液相で生成するマグネタイト中の Fe^{2+} が Zn^{2+} に置換されると $Zn_xFe_{3-x}O_4$ が生成するが、 Zn^{2+} への置換量が少ないと酸化して δ- $Zn_xFe_{1-x}OOH$ が生成したと考えられる。

<u>5. 参考文献</u>

[1] U. Schwertmann, R. M. Cornell "Iron Oxides in the Laboratory: Preparation and Characterization" Wiley-VCH, Weinheim, Germany (2000)

[2] A. Y. Polyakov, A. E. Goldt, T. A. Sorkina, I. V. Perminova, D. A. Pankratov, E. A. Goodilin, Y. D. Tretyakov, CrystEngComm. **14**, 8097–8102 (2012)

[3] M. C. Pereira, E. M. Garcia, A. C. Silva, E. Lorencon, J. D. Ardisson, E. Murad, J. D. Fabris, T. Matencio,

T. C. Ramalho, M. V. J. Rocha, J. Mater. Chem. 21, 10280-10282 (2011)

[4] N. Nishida, S. Amagasa, Y. Kobayashi, Y. Yamada, Appl. Surf. Sci. 387, 996-1001 (2016)

[5] X. Liu, J. Liu, S. Zhang, Z. Nan, Q. Shi, J. Phys. Chem. C. 120, 1328-1341 (2016)

[6] J. Zhu, Z. Nan, J. Phys. Chem. C. 121, 9612–9620 (2017)

[7] J. Liu, Y. Bin, M. Matsuo, J. Phys. Chem. C. 116, 134-143 (2012)

[8] N. Nishida, S. Amagasa, Y. Kobayashi, Y. Yamada, Hyperfine Interact. 237, 111 (2016)

[9] Y. H. Li, S. Y. An, C. S. Kim, IEEE. T. MAGN. 49, 7 (2013)

[10] S. Ferrari, J. C. Aphesteguy, F. D. Saccone, IEEE. T. MAGN. 51, 6 (2015)

液中レーザーアブレーションで生成した炭化鉄微粒子の

レーザー光照射による変化

Effects of Laser Irradiation on Iron Carbide Nanoparticles Produced by Laser Ablation in Organic Solvent

東理大¹、電通大²、理研³

天笠翔太¹、西田直樹¹、小林義男^{2,3}、山田康洋¹

S. Amagasa¹, N. Nishida¹, Y. Kobayashi^{2,3} and, Y. Yamada¹

¹Tokyo Univ. of Science

²The University of Electro-Communications

³RIKEN

1. はじめに

液中レーザーアブレーション法は金属固体と適切な溶媒を組み合わせることで目 的とする金属化合物微粒子を合成できる簡便な方法である。レーザーアブレーション によって生じた金属プラズマは溶媒分子と高エネルギーで反応しながら冷却されるた め、準安定相の化合物を生成が期待できる。鉄をターゲットとした場合、溶媒として 水を用いると酸化鉄微粒子が生成する[1]。また、有機溶媒を用いると炭化鉄微粒子が 生成するが[2-4]、ビーカーなどを容器とした大気開放型の実験系や溶存気体の影響に よって、酸化鉄が同時に生成してしまう欠点がある。さらに生成した微粒子は液中に 滞留するため、これがレーザー光に晒されることで別の反応が進行することがあり、 特に化合物微粒子はその組成変化が起こることがある。我々はこれまでに、上記の問 題点を解決するために、密閉型容器と溶媒の脱気によって酸化鉄の生成を抑制し[5]、 溶媒循環型容器を新たに製作して滞留粒子のレーザー光照射を抑制できることを報告 した[6]。

一方で、微粒子を懸濁させた溶液へのレーザー光照射も多くの研究がなされてお り、粒径変化や組成変化が起こることが報告されている[7,8]。しかし、炭化鉄微粒子 については報告例がなく、その影響を詳細に調べる必要がある。我々は溶媒にエタノ ールを用いて鉄のレーザーアブレーションによって生じた試料 (laser ablation sample; LA) と引き続くレーザー照射によって変化した試料 (laser irradiation sample; LI) を比 較した結果、LA では準安定相とみられる炭化鉄が生成したのに対し、LI によって粒径 の増大と準安定相の消失が起こり、最も安定な炭化鉄である Fe₃C に変化することを報 告した[9]。

以上の結果を踏まえて、ここでは溶媒として n-ヘキサンを用いて炭化鉄微粒子を 生成し、LA と LI の比較をメスバウアー分光法、粉末 X 線回折 (XRD) 、透過型電子 顕微鏡 (TEM, HR-TEM) によって行った結果について報告する。

2. 実験

ガラス製の容器にターゲット試料保持台とレーザー集光用凸レンズを取り付け、 これにダイヤフラムポンプとフィルター (セルロースアセテート製、孔径 0.45 μm) を 接続し、溶媒循環型容器とした。この溶媒循環型容器は大気と遮断されるよう設計した。試料保持台には 5^{7} Fe 濃縮した金属鉄を取り付け、予め脱気精製した n-ヘキサンを200 mL 充填した。Nd:YAG レーザーの第二高調波 (Continuum, Surelite I-10, 532 nm, 100 mJ/pulse, 10Hz) を用いて、溶媒を循環させながら 30 分間レーザーアブレーションを行い、LA を得た。さらに LA を同様の溶媒へ再懸濁し、レーザー光を集光せずに 3 時間照射して LI を得た。得られた微粒子(LA と LI)は 5^{7} Co/Rh による透過型メスバウアー分光測定、XRD、TEM、HR-TEM により分析した。

<u>3. 結果と考察</u>

Fig.1に n-ヘキサンを溶媒に用いて得られ た LA 及び LI の TEM 像、HR-TEM 像、及び粒 径分布を示す。LA (Fig. 1a) は平均粒径が 13 nm の球形粒子と無定形物質が混在して生成した。 HR-TEM 像(Fig.1b) より球状粒子を覆う物質は グラファイト (面間隔 d=0.35 nm) であること がわかった。この無定形物質はエタノールを用 いた場合[9]に比べて多く見られた。レーザーア ブレーションで生成する鉄プラズマは、冷却時 に溶媒を分解して化合物微粒子が生成する[1-6, 9]。n-ヘキサンではエタノールに比べて1分子 あたりの炭素原子数が多く、過剰な炭素が炭化 鉄粒子の周りに生成したと考えられる。LI (Fig. 1c) は粒径分布が広がり、平均粒径は 26 nm に 増大した。粒径の増大はレーザー光照射により 粒子と無定形物質が加熱されて粒子同士が溶 融・凝集したためであると考えられる。

Fig.2 にそれぞれの XRD パターンを示す。 LA では Fe₃C のパターンが見られた。一方 LI では、LA に比べて明瞭なパターンが見られなく なった。バックグラウンドと比較すると LA と 同様の位置に不明瞭な回折が僅かに見られた。 液中レーザーアブレーションでは XRD パター ンにあらわれない微小な結晶子が集まった粒子 やアモルファスとなることがある[6,9]。それら を詳細に分析するためにメスバウアー分光測定 を行った。

Fig.1 (a) TEM image and (b) HR-TEM image of nanoparticles produced by LA in n-hexane. (c) TEM image of nanoparticles produced by LI of the LA particles suspended in n-hexane. Particle size distribution of the nanoparticles produced by (d)LA and (e) LI.

Fig.2 XRD patterns obtained from (a) LA and (b) LI. Bars in the figure denote Fe₃C (PDF#00-035-0772)

Fig.3 に LA のメスバウアースペクトルを示す。293 K と 7 K のどちらにおいても Fe₃C のセクステットのみではフィットできず、他の成分の混在がみられた。293 K の スペクトル(Fig.3a)では、Fe₃C の他に内部磁場分布をもつ成分、常磁性成分、Fe₃C より も内部磁場の大きい成分がみられた。内部磁場分布を持つ成分は内部磁場の最頻値が 20 T であり、Fe₃C の格子欠陥をもつ成分であることが考えられる。常磁性成分は、炭 化鉄において鉄と炭素のアモルファスとなってい るものと、超常磁性によるものであることが考え られる。大きな内部磁場を持つ磁気分裂成分は、 α-Fe より小さな内部磁場を持っている。そのため Fe₃Cに比べて炭素固溶量が小さい炭化鉄である 考えられる。7Kで測定したスペクトル(Fig.3b)で は Fe₃C 及び内部磁場分布を持つ成分、Fe₃C より も内部磁場の大きい成分が見られた。293 K で見 られた常磁性成分は消失し、内部磁場分布成分の 一部となったと考えられる。面積強度から成分比 を見積もると、293 K での内部磁場分布をもつ成 分と超常磁性成分の和が、7Kにおける内部磁場 分布をもつ成分がほぼ等しくなった。大きな内部 磁場の大きい成分は、293 K 測定の場合と比較し て、7Kで内部磁場がさらに大きくなった。準安 定相の炭化鉄のメスバウアーパラメーターが理論 計算によって予測されており[10]、大きな内部磁 場を持つ成分の内部磁場の値は Fe₄C の計算値と 近いことがわかった。Fe₄C は高温で安定なγ-Fe と同じ fcc 構造を有し、四面体サイトまたは八面 体サイトに炭素が侵入した構造をもつと考えられ ている[11]。準安定相の Fe₄C は液中レーザーアブ レーションの高温高圧反応場で生成したのち急冷 却され、さらに微粒子化したことで得られたと考 えられる。また、この成分は XRD パターンでは見 られず長周期的構造を有していない。

Fig.4にLIのメスバウアースペクトルを示す。 293 K のスペクトル(Fig.4a)では Fe₃C と内部磁場 分布をもつ成分、および常磁性成分が見られた。 LA で見られた Fe₄C は LI では見られず、レーザー 照射により安定な Fe₃C へ変化したと考えられる。

Fig.3 Mössbauer Spectra of LA particles acquired at (a) 293 and 7 K. The distributions of hyperhine magnetic fields are indicated on the right side.

Fig.4 Mössbauer Spectra of LI particles acquired at (a) 293 and 6 K. The distributions of hyperhine magnetic fields are indicated on the right side.

Table 1 Mössbauer parameters of the spectra shown in Fig. 3.

Table 2 Mössbauer parameters of the spectra shown in Fig. 4.

Temp.	Component	δ	ΔEq	H	Г	Yields	Temp.	Component	δ	ΔEq	H	Г	Yields
	1	mm s-1	mm s ⁻¹	Т	mm s-1	%		e e inferierra	mm s ⁻¹	mm s ⁻¹	Т	mm s ⁻¹	%
202 V							202 11						
293 K	Fe ₃ C	0.19(1)	0.03(3)	21.6(1)	0.88(7)	23	293 K	Fe ₃ C	0.17(2)	0.05(4)	20.8(2)	0.76(6)	57
	Fe₄C	0.18(1)	-0.02(1)	26.6(1)	1.10(3)	43		Fe ₂ C(DHMF)	0.15(6)	0.06(9)	17*		20
		(-/		(-/				1030(D11011)	0.12(0)	0.00())	17		20
	Fe ₃ C(DHMF)	0.18(1)	-0.01(2)	20*		28		Fe ₃ C(SPM)	0.35(4)	0.74(7)		0.83(18)	23
	Fe ₃ C(SPM)	0.21(1)	1.42(3)		0.70(5)	7	3 K	Fe ₃ C	0.32(2)	0.05(4)	25.0(1)	0.69(2)	62
8 K	Fe ₃ C	0.22(1)	-0.00(2)	25.3(1)	0.81(3)	29		Fe ₃ C(DHMF)	0.28(5)	-0.10(10)	23*		38
	Fe ₄ C	0.21(1)	-0.02(2)	29.8(1)	0.98(3)	38							
	Fe ₃ C(DHMF)	0.18(1)	-0.01(2)	23*		32							

この変化は粒子周りの無定形炭素から炭素原子が Fe₄C へ供給されたためである。6K のスペクトル(Fig.4b)では常磁性成分が消失し、Fe₃C と内部磁場分布をもつ成分のみが 見られた。このことから、293 K のスペクトルにおけるダブレットは超常磁性成分であ り、6 K のスペクトルでは内部磁場分布をもつ成分の一部となっていると考えられる。

n-ヘキサンを溶媒としたサンプルにおいて、LIでは XRD パターンとメスバウアー スペクトルからエタノールとは異なる傾向が見られた。エタノールでは LI後に平均粒 径の増大、XRD パターンが明瞭になり、メスバウアースペクトルでは室温、低温の測 定で両方共 Fe₃C の磁気分裂成分のみが観測された。つまり LI で粒径増大に伴い結晶 成長が同時に起こった[9]。一方で n-ヘキサンを用いた場合、平均粒径の増大は見られ たが、XRD パターンは不明瞭になり、メスバウアースペクトルでは超常磁性成分が観 測された。これらの変化は、結晶成長によっておこるものとは逆の結果であり、LI で 結晶子が小さくなったことが示唆された。Fe₄C から Fe₃C へ組成変化するときには結晶 構造が変化し、同時に加熱されて結晶成長が起こると考えられる。そのため、エタノ ールでは組成変化と結晶成長の両方が見られた。一方、n-ヘキサンを用いた場合、出発 物質である LA は粒子以外の炭素がエタノールに比べて多く生成しており、Fe₄C から Fe₃C への組成変化は起こるが、結晶成長が十分でないため超常磁性の成分が残ってい ると考えられる。

4. 結論

溶媒に n-ヘキサンを用いたとき、平均粒径 13 nm の球形粒子と無定形物質が LA として生成し、Fe₃C と Fe₃C の格子欠陥、及び長周期的構造を持たない Fe₄C として得 られた。n-ヘキサン中に再懸濁させてレーザー光照射すると LI として Fe₄C が消失し、 Fe₃C のみとなった。エタノールと比較して LA で無定形炭素が過剰に生成し、また LI での結晶成長が十分に起こらないことが明らかとなった。

参考文献

- [1] P. Liu, W. Cai, and H. Zeng, J. Phys. Chem. C 112, 3261-3266 (2008)
- [2] V. Amendola, P. Riello, and M. Meneghetti, J. Phys. Chem. C 115, 5140-5146 (2011)
- [3] L. Franzel, M. F. Bertino, Z. J. Huda, and E. E. Carpenter, *Appl. Surf. Sci.* 261, 332-336 (2012)
- [4] A. Kanitz, J. S. Hoppius, M. del Mar Sanz, M. Maicas, A. Ostendorf, and E. L. Girevich, *ChemPhysChem* 18, 1-10 (2017)
- [5] T. Matsue, Y. Yamada, and Y. Kobayashi, Hyperfine Interact. 205, 31-35 (2012)
- [6] S.Amagasa, N. Nishida, Y. Kobayashi, and Y. Yamada, Hyperfine Interact. 237,110 (2016)
- [7] Z. S.-Warkocka, K. Kawaguchi, H. Wang, Y. Katou, and N. Koshizaki, *Nanoscale Res. Lett.* 6: 226 (7 pages) (2011)
- [8] A. Pyatenko, H. Wang, N. Koshizaki, and T. Tsuji Laser Photonics Rev. 7, No. 4, 596–604 (2013)
- [9] S.Amagasa, N. Nishida, Y. Kobayashi, and Y. Yamada, Hyperfine Interact. 238, 83 (2017)
- [10] X. Liu, S. Zhao, Y. Meng, Q. Peng, A. K. Dearden, C. Huo, Y. Yang, Y. Li, and X. Wen, Sci. Rep. 6, 26184 (2016)
- [11] C.-M.Deng, C.-F.Huo, L.-L. Bao, X.-R. Shi, Y.-W. Li, J. Wang, and H. Jiao, Chem. Phys. Lett. 448, 83–87 (2007) 6

平成 29 年度 KUR 専門研究会

「短寿命 RI を用いた核分光と核物性研究 IV」プログラム

	t	於:京都大学原子炉	実験所 事務棟大会議室
		(講演時間 20 分	+ 質疑応答 5 分)
平成	29年12月20日(水) 13:45~17:30		
は	じめに 13:45~13:50		
(座	長 小林義男) 13:50~14:40		
1)	京大原子炉におけるメスバウアー分光の現状	北尾真司	(京大原子炉)
2)	1,4-ビス(4-ピリジル)ベンゼン型架橋配位子を用いた鉄(II)集積型錯体のスピンクロス	オー 吉浪啓介	(広大院理)
	バー現象		
	休憩 14:40~14:50		
/ 🖶			
	★ 甲島 見/ 14:30~16:05		(十)市化学版四环)
3)	Mossbauer spectroscopy applications in novel environmental and energy catalysts	土 単虎	(大連化字物理研)
4) 5)	11字的手法による新奇な鉄酸化物ナノ植士の作衆	四田追倒	(果理入理)
5)	エナレンおよびアセナレン・マトリックス中に注入された Fe 原十のメスハリアースペット	・ル 小林義男	(電通入阮亢進)
	休憩 16:05~16:15		
(座	長 谷垣 実) 16:15~17:30		
6)	炭素 9 の β-NMR	杉原貴信	(阪大院理)
7)	(p,n)逆運動学反応によるスピン偏極 ¹² N ビーム生成機構	三原基嗣	(阪大院理)
8)	スピン 1/2 のベータ NMR プローブ核 ¹⁵ C, ¹⁷ Nの開発	南園忠則	(阪大院理)
<i>,</i>			
	懇親会 18:00~20:00		
半反	29年12月21日(木) 9:45~15:15		
(座	長 三原基嗣) 9:45~10:35		
9)	ミュオンスピン緩和法によるアルミ合金中の原子空孔研究	西村克彦	(富山大工)
10)	重い電子化合物 SmT ₂ Al ₂₀ (T:遷移金属)における Sm 価数と磁性	筒井智嗣	(JASRI/SPring-8)
	休憩 10:35~10:45		
책지)	■ 山田唐洋) 10:45~12:00		
11)	双安定性を示す Hofmann_like 喜分子結休	北澤考中	(車邦大理)
12)	- 鉄混合百子価結体における連結異性と電荷移動相転移に及ぼす効果のメスバウアー	-分光 小自害道	(単田理研)
12)	或成百水了Ш頭杯に807つ定相共在C電荷呼動相互呼に及る 第 効果の パパック 研究	刀九 小迅感道	
13)	スピネル型化合物中 Cd-111 の核スピン緩和	佐藤 渉	(金沢大理工)
10)			(=,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	昼食 12:00~13:00		
(座	長 谷口秋洋) 13:00~14:15		
14)	CaF2のインビーム・メスバウアー分光	高濱矩子	(電通大院)
15)	LaBr3シンチレーターを用いた励起準位の寿命測定	大野臣悟	(名古屋大院工)
16)	KISS、超微細構造測定と質量測定の現状	宮武宇也	(KEK(和光))
	11		
	休憩 14:15~14:25		
र्म्या)	■ 北澤老中) 14·25~15·15		
()) ()) ())	区 14.2011.0.13 温式はによる部分-鉄道合酸化物物粒子の合成	伊兹帕本国	É (亩珊大腔珊)
18)	※」、シューのの単当、シュロロロコンスキューションの「ジョン」の「ション」を示していた。	アが見たう	
10)		<u></u>	

平成 29 年度専門研究会 「短寿命 RI を用いた核分光と核物性研究 IV」 出席者名簿

			(順不同・敬称略)
氏名	所属	氏名	所属
後藤 淳	新潟大学	久保謙哉	国際基督教大
佐藤 渉	金沢大	宮武宇也	KEK, WNSC
西村克彦	富山大学	小島憲道	豊田理化学研
小林義男	電通大	筒井智嗣	JASRI
高濱矩子	電通大	王 軍虎	大連化学物理研究所
山田康洋	東理大		
西田直樹	東理大		
天笠翔太	東理大		
伊藤帆奈美	東理大		
北澤孝史	東邦大	(所内)	
柴田理尋	名古屋大	大久保嘉高	
大野臣悟	名古屋大	瀬戸 誠	
常山正幸	京大	谷口秋洋	
松多健策	阪大	北尾真司	
三原基嗣	阪大	谷垣 実	
南園忠則	阪大	小林康浩	
杉原貴信	阪大	窪田卓見	
中島 覚	広大	薮内 敦	
吉浪啓介	広大	黒葛真行	

(以上33名)

KUR REPORT OF KYOTO UNIVERSITY RESEARCH REACTOR INSTITUTE

発行所 京都大学原子炉実験所
発行日 平成 30 年 3 月
住所 大阪府泉南郡熊取町朝代西 2 丁目
TEL (072) 451-2300