Y. Kogure, M. Doyama, Y. Inoue, T. Yoshiie¹, Q. Xu^{1} , and Y. Hayashi¹ and X. Z. Cao^{1}

Teikyo University of Science and Technology ¹*Research Reactor Institute, Kyoto University*

INTRODUCTION: Transmission positron images have been obtained at Teikyo University of Science and Technology using a sealed ²²Na of 100 micro Ci. At Research Reactor Institute, Kyoto University, we obtain transmission electron images using ²⁰⁴Tl. ²²Na emits "white positrons" (beta plus decay) and ²⁰⁴Tl emits "white electrons" (beta minus decay). At Teikyo University of Science and Technology, 200-kV transmission electron microscope was also used to obtain 200-kV transmission images. The transmission coefficients are compared.

EXPERIMENTS: TI was irradiated by neutrons in KUR to form ²⁰⁴TI. ²⁰⁴TI emits electrons with continuous energies ("white"). ²⁰⁴TI was placed above a sample which was set on a imaging plate and exposed for 12 hours. Similar experiment using ²²Na instead of ²⁰⁴TI was performed at Teikyo University of Science and Technology. The same aluminum foils were inserted in an transmission electron microscope at Teikyo University of Science and Technology was performed.

RESULTS: Figure 1 shows an imaging plate image by 22 Na. The holizontal lines indicate the place where the values of PSL were measured. The values are shown as a wiggling lines. The numbers just above the horizontal lines show the number of sheets of aluminum transmitted. Figure 2 shows a similar imaging plate image by 204 Tl. Figure 3 show a similar imaging plate image through 200-kV electrons in a transmission electron microscope. From Figs. 1, 2 and 3, the transmission of beta plus, beta minus and 200-kV electrons are given in Table 1.

In Fig. 4, Log10PSL vs. number of aluminum foils (13 um each) is plotted.

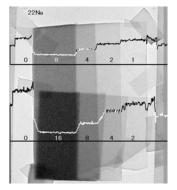


Fig. 1. Imaging plate image using ²²Na. PSL was taken along the horizontal lines. The numbers just above the horizontal lines are the number of aluminum foils.

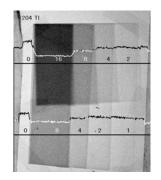


Fig. 2. Similar to Fig. 1, but decayed electrons emitted by the decay from 204 Tl was used. The wiggling lines show PSL values.

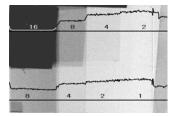


Fig. 3. Similar imaging plate image using 200-kV electrons.

Table 1. Transmission by β^+ , β^- and 200kV electrons

No.	Al Foil	²² Na	²⁰⁴ Tl	Elec.
Al	Thickness			Microscope
Foils	Micro m			
1	14	0.951515	0.774834	1.000000
2	28	0.775758	0.774834	0.9545205
4	56	0.600000	0.728477	0.8013700
8	112	0.363636	0.582781	0.5136999
16	224	0.157576	0.331126	0.0273970

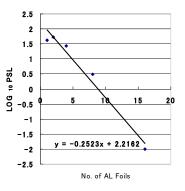


Fig. 4. A plot of number of aluminum foils-vs. logarithm of PSL calculated from Fig. 1.