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INTRODUCTION:  The Cherenkov light is a faint 
emission accompanying the passage of charged particles 
through a transparent medium at speeds faster than the 
speed of light in that medium[1]. Since high-energy 
gamma rays can generate high-velocity electrons by 
Compton scattering, Cherenkov light can be emitted as a 
result of gamma radiation fields as well. Thus, the Che-
renkov Viewing Device (CVD) was developed as an in-
strument specifically designed to form an image of the 
UV portion of this glow and it is used routinely by the 
IAEA around the world[2] to verify irradiated fuel stored 
at light-water reactor sites as well as at separate fuel sto-
rage facilities. In JMTR, the Cherenkov light from the 
spent fuels was measured by the video camera and corre-
lation between gamma ray and illuminance was eva-
luated[3]. In this study, we are developing the in-reactor 
observation system for the management of reactor opera-
tion to establish the evaluation method of reactor power 
from the illuminance measurement of Cherenkov light.  
 
EXPERIMENTS:  The observation system of Cheren-
kov light is composed of the zoom camera with super-
HAD CCD, the controller of camera and the recorder. As 
the preliminary examinations, the measurement of illu-
minance for the diaphragm of camera and the selection of 
neutral density filters (ND-filters) with halogen light 
were carried out. Eight kinds of ND-filters were prepared 
in the experiments. The obtained data were evaluated by 
the image processing software called “Image J”. From the 

results of preliminary tests, the observation system of 
Cherenkov light for KUR (see Fig. 1) was established. 
 
RESULTS:  The relationship of transmittance between 
the catalogue value and measured value of the ND-filters 
is shown in Fig.2. From the result, the transmittance of 
the ND-filters up to 1/64(ca. 1.5%) was the same as that 
of the catalogue value. On the other hand, the ND-filters 
with low transmittance were not agreed, and it is neces-
sary to obtain the experimental data of transmittance with 
Cherenkov light. The analysis of transmittance by the 
Image J is shown in Fig.3. In this experiment, the illu-
minance was 1720lx and the ND-filter of 1/64 was used. 
The diaphragms of camera were F16 and F11. From the 
result, the analysis value of transmittance was about 0.37 
and this value was different from the experimental data 
“0.47”. It seems that the wavelength effects on the trans-
mittance.  
 
CONCLUSION:  The observation system of Cheren-
kov light was established for the operating reactors, and 
the preliminary experiments were carried out to measure 
the illuminance with the halogen light. Properties on 
transmittance of the ND-filters were obtained. It is ne-
cessary to improve the analysis method of transmittance 
by the Image J. In future, the measurement of Cherenkov 
light inside the KUR core tank will be carried out with 
this observation system and correlation between illumin-
ance of Cherenkov light and reactor power will be eva-
luated. 
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 Fig.1. Concept of observation 
system of Cherenkov light 
in KUR 

Fig.2. Relationship of transmittance be-
tween the catalogue value and 
measuring value of ND-filters

Fig.3. Analysis of transmittance by the 
Image J (Illuminance : 1720 lx, 
ND-filter : 1/64). 
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INTRODUCTION:  An accelerator-driven subcritical  
reactor system has been constructed in A-loading facility 
of the KUCA and a series of coherence-function mea-
surement and Feynman-α analyses have been performed 
to develop the methodology of these subcriticality mea-
surements. The preliminary results of coherence-function 
measurements are showed in this report. 
 
EXPERIMENTS:  These measurements were per-
formed in a reactor system referred to as A3/8”P36EU(3). 
A tritium target was placed outside polyethylene reflector 
and pulsed neutron beam was emitted from the target. As 
pulsed beam frequency, 20, 100 and 500Hz were em-
ployed. Coherence function between two BF3 counters 
closely placed were measured to determine the 
prompt-neutron decay constant. The experiments were 
carried out in two subcritical states. The subcriticality of 
the state was adjusted by changing control rod pattern. 
These control rod patterns are showed in Table 1. 
 

Table 1. Control rod patterns employed 

 
 
RESULTS:  Figure 1 shows the coherence function 
measured for rod pattern B, where pulse frequency has 
set to 20Hz. Many sharp peaks were observed at integral 
multiple of pulse frequency 20Hz. In the case of pulse 
frequency of 100 and 500Hz, the peaks were appeared at 
integral multiple of the pulse frequency. Masking these 
peaks, the following equation was fitted to reduced data: 

Coh(ω ) =
A + B[1 + (ω /α0)2 ]

A + 1 + (ω /α0)2 ,        (1) 

where ω is angular frequency(1/s), α0 prompt-neutron 
decay constant, A and B constants related to reactor con-
figuration and instrumentation system. 
   Figure 2 shows the reduced data and the fitted curve 
to the data. The least-squares fitting of Eq.(1) is success-
ful. In Table 2, the prompt-neutron decay constant α0 
determined by the fitting are summarized. These decay-
constants are consistent with that obtained by pulsed neu 

 
Fig. 1. Measured coherence function 

in pulse frequency of 20Hz 
 

 
Fig. 2. Least-squares fit to measured coherence function 

in pulse frequency of 20Hz 
 

Table 2. Prompt-neutron decay constant [1/sec] 

 
 

tron method[1]. 
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INTRODUCTION:  Rare-earth elements are consi-
dered as a candidate of advanced burnable poison. How-
ever, few critical experiments have been carried out so far 
to validate the accuracy of their nuclear data. So critical 
experiments loaded with rare-earth elements (Dy, Ho, Er 
and Tm) were carried out and their reactivity worth were 
measured at the KUCA B core. The experiments were 
performed on B3/8”P36EU(3) core and B1/8”P60EU-EU 
(5) core. These critical experiments attempt to estimate 
the validity of nuclear data of the rare-earth elements. 

F F 1/8"P60EUEU fuel element3/8"P36EU fuel element  
Polyethylene Reflector

V Void Tube  
V8 F6 Partially loaded fuel elementReflector with void tube  
S Sample fuel element  

Fig.2. Arrangement of the two cores (left- B3/8”P36EU 
(3) core, right- B1/8”P60EU-EU(5) core) 
 
On the basis of preliminary experiment, excess reactivity 
measurements of rare-earth sample were carried out in 
October. The special elements named “reflector with void 
tube” and “partially loaded fuel element” in Fig.2 were 
used to adjust the excess reactivity of the core to be ap-
proximately 0.25%Δk/k, and the reactivity worth of the 
rare-earth sample was adjusted to be approximately 
0.15%Δk/k. The packing mass of rare-earth sample was 
determined through previous calculations by 
Monte-Carlo code MVP. First, the excess reactivity of the 
core with each sample was measured by the period me-
thod by changing the position of only C1 control rod. 
Then, we draw the reactivity curve of the C1 control rod 
to evaluate the excess reactivity of a core loaded with or 
without rare-earth sample by the position of C1 at critical 
point.  

 
EXPERIMENTS:  Preliminary experiment was carried 
out in June to determine the measured rare-earth elements, 
the arrangement of the core and the way of packing 
rare-earth elements into the core. We selected four ele-
ments to be measured: dysprosium (Dy), holmium (Ho), 
erbium (Er) and thulium (Tm) because these elements 
have sequential atomic numbers and consist a series of 
burnup chain. So it was considered that systematic data 
of these rare-earth elements would be expected. The 
rare-earth elements were used in the oxide form in the 
experiment because they are chemically stable. In addi-
tion, rare-earth elements has a large self-shielding effect 
caused by a large cross section, therefore the sample was  
diluted with alumina (Al2O3) powder to suppress the spa-
tial self-shielding effect since Al2O3 has small impact on 
the excess reactivity. They were packed into an Al sample 
case (50.8mm × 50.8mm × 10.0mm), and the Al sample 
case was inserted at the center of fuel element (“sample 
fuel element”) as shown in Fig.1. The sample fuel ele-
ment was loaded at the center of the core as shown in 
Fig.2. Figure 2 shows the arrangement of the two cores to 
be measured the sample worth. Two kinds of cores with 
different neutron spectrum (the B3/8”P36EU (3) core - 
softer spectrum, the B1/8”P60EU-EU(5) core - harder 
spectrum) were constructed to obtain the dependency of 
the sample worth on the neutron spectrum. 

 
RESULTS:  Table 1 shows the mass of each element in 
Al sample case and the average of sample worth on two 
cores. The number in parentheses is the number of the 
measurement. Sample worth of the rare-earth elements 
was evaluated with less than 0.01%Δk standard deviation 
from the difference of excess reactivity of the cores be-
tween with and without the rare-earth sample. The com-
parison of the sample worth between the measured results 
and the calculation results among the different nuclear 
libraries such as JENDL-3.3,ENDF/B-VII.0 and 
JEFF-3.1 is under execution. 
 

  

Table 1. Sample worth of the rare-earth elements. 
Core Type Dy2O3 Er2O3 Ho2O3 Tm2O3

mass (g) 0.95 9.00 3.50 6.00
sample worth

（⊿k/k）
0.174% (4) 0.185% (4) 0.161% (4) 0.172% (4)

measurement
error (0.009%) (0.004%) (0.006%) (0.004%)

mass (g) 5.50 14.00 23.50 22.00
sample worth

（⊿k/k）
0.138% (5) 0.151% (7) 0.119% (5) 0.141% (5)

measurement
error (0.002%) (0.004%) (0.003%) (0.006%)

B3/8”P36
EU (3)

B1/8”P60
EU-EU(5)

Fig.1. The packing of rare-earth elements (left): the load-
ing of Al sample case to sample fuel element (right) 
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INTRODUCTION:  Real time neutron spectrometers  
have been desired to evaluate the performance of 
advanced nuclear facilities such as accelerator driven 
subcritical systems (ADS) and fusion reactors, which 
have intense and high energy neutron fields. We, 
therefore, proposed a novel neutron spectrometer which 
consists of multiple simple detectors having various 
threshold energies. The element detector of the proposed 
spectrometer consists of a radiator of recoil protons, a 
recoil proton stopping film and a thin scintillator for 
detection of protons passing through the stopping film, as 
shown in Fig. 1. The scintillation photons are transmitted 
through a light guide and detected by a photomultiplier 
tube. The maximum energy of recoil protons detected by 
the scintillator depends on the thickness of the stopping 
film. In other words, the threshold neutron energy of this 
detector Eth can be adjusted by varying the thickness of 
the stopping film. In addition, a thin scintillator results in 
low sensitivity for gamma-rays, because low LET fast 
electrons generated by gamma-rays pass though a 
scintillator without significant energy deposition. In this 
study, we discuss the fundamental properties of the 
element detector the proposed spectrometer through 
basic experiments and Monte Carlo simulations.   

Fig. 2.  Examples of the energy dependence of the 
detection efficiency for the detector with the threshold 
energy of 1, 4 and 6 MeV. 

EXPERIMENTS:  We made the basic experiments 
using the accelerator based DT neutron source at KUCA 
to confirm the fundamental performance of the proposed 
spectrometer. The six detectors with the threshold 
energies of 3, 5, 7, 9, 13 and 15 MeV were directly 
irradiated by the DT neutron source without neutron 
moderation. The DT neutron source were operated in the 
pulse mode with the pulse width of 25 μs. These neutron 
pulses had after pulse components due to arc discharge 
ion source properties. The temporal detector responses 
are shown in Fig. 3. We confirmed that the detector with 
the threshold energy less than 14 MeV, which is the 
energy of DT neutrons, selectively had large response. 
The detector with the threshold energy of 15 MeV also 
responded because the energy threshold became unclear 
with increasing the threshold energy setting. These 
detectors were confirmed to have sufficient time 
response for ADS experiments. 
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Fig. 1.  Conceptual drawing of the element detector of 
on-line neutron spectrometer.  

MONTE CALRO SIMULATIONS:  The detail 
configuration of each element detector were designed by 
using Monte Carlo simulations. Figure 2 shows examples 
of the energy dependence of the detection efficiency for 
each element detector. The detection efficiencies with 
sharp thresholds and flat responses above the thresholds, 
which are well suited for the spectrum unfolding, were 
achieved by adjusting the thicknesses of the radiators and 
stopping films. 

Fig. 3.  Temporal detector responses for the 
detectors with the threshold energy of 3,13 and 
15 MeV. The DT neutron source was operated 
by the pulse mode with pulse width of 25 μs. 
Temporal variation of the ion beam current of 
the DT source is also plotted. 
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INTRODUCTION: In order to observe linear relation 
between the subcritical multiplication factor ksub and 
yield ratio of γ rays to neutrons, measurement techniques 
of total yields of both radiations have been studied. Mea-
surements of fission γ rays and neutron absorptions out-
side subcritical cores had been conducted. 
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EXPERIMENTS: 4 subcritical cores which consist of 
C35 assemblies (4, 3, 2 rows x 2 columns and 2 rows x 
1.5 column) were mocked up as shown in Fig. 1. Those 
cores were driven by a 252Cf source of 1.3 x 106 Bq in-
serted near the core center. To obtain axial fission distri-
bution, Indium (In) wires of 1.5 mm diameter is irra-
diated in the cores. The γ ray spectra were measured with 
a BGO scintillator (BGO) located at 36cm outside the 
cores. 2.223MeV γ rays emitted from H(n,γ) reactions in 
water outside the cores were measured with a NaI scin-
tillator (NaI) shielded by a Pb shadow bar eliminating the 
direct γ rays originated in the cores. Measurements with 
BGO and NaI were also performed for a 252Cf with no 
fuel case. H(n,γ) reaction distributions were experimen-
tally evaluated assuming equivalence of them to those of 
6Li(n,t) and 115In(n,γ) reactions. Then we measured neu-
trons with three 6Li fiber scintillator detectors (horizontal 
direction) and In wires activation (axial direcxtion) by 
applying more intense 252Cf source (6.2 x 106 Bq). 
RESULTS:  The measured γ ray pulse height spectra in 
BGO consist of fission and capture components [1]. Pulse 
counting of fission γ rays was simulated with MCNP-5 
taking into account of axial fission distributions evaluated 
by the measured activities of the In wires irradiated in the 
cores. Horizontal distributions of fission were modeled 
by cosine shape functions as done by Suzaki [2]. Primary 
and secondary fission γ ray yields were estimated by 
normalizing the calculated pulse height spectra to the 
measured fission ones in BGO for the four cores and the 
no fuel geometry. With the data of yield ratio of γ ray to 
neutron [3], the primary and the secondary neutron yields 
were estimated separately. Finally, ksubs were deduced. 
The values agree with ones by neutronics calculations as 
listed in Table 1, which confirms the measurements tech-
nique of total fission γ ray yield. 
 With NaI, 2.223MeV γ rays in H(n,γ) reac-
tions were measured. Pulse counting of γ rays with NaI 
was simulated by coupled neutron – photon transport 
calculations with MCNP-5. The calculated count rates are 
compared to the measured ones in Table2. The fractional 
standard deviation of C/E for the 5 geometries is 5.1%. 
 Contributions of the H(n,γ) reactions in the 
water outside the cores to the 2.223MeV γ ray count rates 

in NaI were estimated by the measured 6Li(n,t) reaction 
rates multiplied by detection efficiency evaluated by 
photon transport calculation with MCNP-5. As shown in 
Fig. 2, significant contribution is still found in points near 
the NaI, although 6Li(n,t) reaction rates is low. For quan-
tification of neutron absorption outside the core by meas-
ured count rates with NaI and the Li fibers without neu-
tronics calculations, the H(n,γ) reactions occurring near 
the NaI should be reduced. 
REFERENCES: 
[1] Nauchi et al., KURRI progress report., (2008) C03-5. 
[2] Suzaki, et al., Preprints 2002 Ann. Meeting of At. 
Energy Soc. of Jpn., Iwaki, Japan, Sep 14–16, (2002), 
I12. 
[3] J.M.Verbeke et al., UCRL-AR-228518, 2009. 
Table 1. ksub evaluated by γ ray (3.0-4.5MeV) count rates 
in BGO in comparison to neutronics calculation. 

Core 2x1.5 2x2 3x2 4x2

ksub by γ ray measurement 0.699 0.786 0.898 0.959

error 0.007 0.007 0.010 0.011

ksub by calculation. 0.726 0.792 0.897 0.956  
Table 2. Photo-electric peak counts for H(n,γ) γ ray in NaI.  

Core 0 2x1.5 2x2 3x2 4x2

Measured(cps) 9.307 1.043 1.207 1.980 6.897

   err 0.012 0.013 0.012 0.011 0.005

MCNP(x10-6) 69.5 7.28 9.15 13.9 46.1

   rel. err 0.012 0.019 0.023 0.030 0.023

E/C(x105) 1.34 1.43 1.32 1.42 1.50  
 

BGO scintillator

NaI 
Scintillator

Pb Shadow bar

Li Fiber

Cf-252 source
for cores

C35-fuel
assemblies

In wire

Cf-252 source
for No-Fuel case

 
Fig. 1. Geometry of subcritical measurement. 
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Fig. 2. H(n,γ) reaction distribution evaluated by 
6Li(n,t) count rate (black dots) and contribution of H(n,γ) 
reaction to 2.223MeV count rate in the NaI (blue cross). 
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INTRODUCTION:  The regression method for pulse 
neutron source (PNS) experiment was developed in 
Ref[1] to monitor sub-criticality of an accelerator-driven 
system (ADS).  This method is applicable to PNS expe-
riment with poor experimental conditions, such as high 
pulse repetition frequency of neutron source that makes 
the alpha-fitting method difficult to determine the de-
layed neutron level. 
  In the present study, the regression method was veri-
fied using the KUCA-A core with various sub-critical 
levels induced by DT neutrons with several numbers of 
pulse repetition frequencies.  
 
EXPERIMENTS:  A BF3 counter was set beside the 
core with a DT neutron source.  Three subcritical cores 
with different positions of the control and safety rods 
were employed (Table 1).  Frequency of the DT neutron 
source was varied from 10 to 800 Hz, where the fre-
quency less than 50 Hz is normally adopted for the alpha 
fitting method.  
 
REGRESSION METHOD:  The next formula is de-
rived from one-point dynamic equation and a periodic 
boundary condition. 
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Here, n(t) is an time evolution of counting rate from a 
detector, S0 a variable for normalization, l an average 
lifetime of neutrons, f a pulse repetition frequency of DT 
source, ρ (=1-1/keff) a reactivity, and β  a ratio of delayed 
neutrons. 
  We fitted this formula to experimental results and ob-
tained the most likely values and errors of S0 and ρ con-
sidering statistic error of the counters. 
 

RESULTS:    Figure 1 shows experimental results by 
rod-worth method, regression method and alpha-fitting 
method.  A large discrepancy was observed for the re-
gression method with 10 and 25Hz, while the al-
pha-fitting method agrees well to the rod worth method.  
Figure 2 shows counting rates for the frequency of 25Hz 
with those estimated by the regression method.  The 
influence of higher modes at the beginning of measure-
ment was eliminated by adopting the regression analysis 
from 1.5 ms. The reason of discrepancy between experi-
ment and the regression method was supposed to be an 
existence of background, which is expected to be around 
800 counts per second (100 counts per channel) from the 
analysis of Fig. 2. 
    

CONCLUSION:  The regression method was investi-
gated for the wide range of DT neutron source frequency.  

ment and the regression method was observed for the low 
frequencies.  Further investigation for background is 
necessary in the next study. 
 

The discrepancy of keff and count rates between experi-

EFERENCE: 
al, “Pulse Neutron Experiment 

 
Table 1.  Conditions of the PNS experiment. 

F

R
[1] K. Nishihara, et. 
for Accelerator-Driven System,” KURRI 
PROGRESS REPORT 2007, CO3-4 (2007). 

requency (Hz) 10, 25, 100, 250, 800 
Counters BF3  
Core Index Core A  Core C Core B

CR position CR1 full in 

2 s CR1, CR
and CR3 

full in 

All CR
and SRs 
full in 

keff (rod 
w 0.9956 0.9916 0.9823 orth) 
βeff* 0.00802 0.00812 0.00813 
l (sec)* 5 5  5.392E-05 .300E-05 .084E-05

* y e 
 

 calculated b  MCNP cod

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Core A Core B Core C

ke
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Rod worth
800Hz, Reg.
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25Hz, alpha fit
10Hz, alpha fit

 
Fig. 1.  keff by rod worth, regression method, and alpha- 

fitting method. 
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Fig. 2.  Experimental result (25Hz). 
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