水/有機溶媒/塩混合系の 長距離秩序に対するSANS解析 <u>貞包浩一朗(京大理)、</u>小貫明(京大理)、長尾道弘(NIST/インディアナ大)、 遠藤仁(東大物性研)、西田幸次(京大化研)、小泉智(原研)、瀬戸秀紀(КЕК)

(1) 塩を含む系での臨界現象とその解析方法

こんな構造を誘起する、という話とその解析方法

2. 水 / 有機溶媒混合系の相分離

3. SANSによる濃度揺らぎの測定

2成分混合系の濃度揺らぎによる散乱は、一般にOrnstein-Zernikeの 式で解析できる

4. Fittingパラメータの温度変化

 I_0 と ξ の温度依存性は、べき乗則に従う (水/有機溶媒系は3D-Ising)

5. 親水性+疎水性のイオン対 (antagonistic塩)

T. Osakai et al., J. Phys. Chem. B, 102, 5691 (1998).

G.M. Luo et al., Science, **311**, 216 (2006).

6. 臨界挙動に対する親水性塩とantagonistic塩の違い

水 / 3-methylpyridine + NaBr (親水性陽イオン+親水性陽イオン)

水 / 3-methylpyridine + NaBPh₄ (親水性陽イオン+疎水性陰イオン)

NaBPh₄の添加に伴い、2相領域が縮小する (相分離しにくくなる)
 15mM以上の塩濃度では、2相状態が観測されない

8. SANS の結果 (NaBPh₄ = 13 mM)

Ornstein-Zernikeの式では説明できない散乱プロファイルが得られた

9. SANS の結果 (NaBPh₄ = 85 mM)

 ・ 周期構造の形成を示唆する Bragg peak が観測された

は違い地球から月を眺める				불
人が直接行くようになって	緑、オレンジへと変化する	and finingers	4 を加えた時の振る舞いを	
も印象的であった。ただ、	近つくにつれ、溶液は青、	298	オンを持つ場、NaBPh	胀
世界中に放映された。これ	分離温度である337Kに	K STORAGE STORAGE	分子と反発しあう)の陰イ	; ぞ
ある。その様子はテレビで	合し、無色透明である。相		ンの混合溶液に疎水性(水	ح
のことで38年も前のことで	結果。室温で系は完全に混	327	は、水と3ーメチルビリジ	ï,
った。1969年7月20日	は加えた場合の目視観察の	ĸ	一朗氏、瀬戸秀紀准教授ら	v
長が人類で初めて月面に立	・3×10のほど乗りローイ	Te	大学院理学研究科の貞包浩	に
11号のアームストロング船	小客夜に ろっかっ トキモー	33-	を及ぼすのか…。京都大学	۲
の後、高校生の時にアポロ	ドノヨーメチレプリジン昆	4 K	臨界現象にどのような影響	υ
クレーターに感動した▼そ	付いて見える。単純な混合		オンと溶媒との相互作用が	は
で月面を眺め大きく見える	め、回折現象によって色が	33 J. J. J.	「諏加した場合、電離したイ	計
に望遠鏡を向け、夜遅くま	の大きさまで成長するた	8 K	らの2成分混合溶液に塩を	出
肉眼で観察した。冬の寒空	ン濃度により光の波長程度	A second of a	分離状態へ転移する。これ	Ľ
で、初めて拡大した月面を	た。この構造の周期はイオ	3	相が空間的に分離した2相	駾
小倍率の簡易な天体望遠鏡	それを実験的に初めて示し	37 K	の成分が濃い相とその逆の	る
雑誌の通信販売で購入した	輪的に指摘されていたが、		混ざった単一相から、一方	s
だ 筆者が 中学生の 頃、 少年	可能性は小賞らによって理	機溶媒と塩。この一見あり	臨界温度で2成分が均一に	v
れるようになっている▼ま	なる。それが周期的に並ぶ	戸准教授によると「水と有	らなる混合溶液の中には、	を
を一分に縮めた動画が見ら	分子が寄り集まって大きく	る様子が捕らえられた。瀕	水と有機溶媒の2成分か	金
ページでは、8分間の映像	が極端に違う場合には、水	そしてオレンジへと変化す		τ
された。JAXAのホーム	が、正負のイオンの水和力	温度上昇に伴い青から緑、	水と有機容媒	
メラによる月面映像が公開	られることを水和と呼ぶ	無色透明であった溶液が、		
HK開発のハイビジョンカ	用によりイオンに引きつけ	添加したところ、窒温では	2 利	2
E)に搭載されている、 N	「水分子が電気的相互作	ol/NoNaBPh*を	Î	兮
NELEZ (SELEZ	していることが分かった。	れに1・3×10の好2乗加	同形序	n
「「「「」」」」「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」	数十!	温度で2相に分離する。こ	した大	Ľ
した月周回衛	を解析したところ、溶媒が	だが、温度を上昇させ臨界	シ月の	研
「山」ち上げに成功	度スペクトルのピーク構造	混合溶液は室温では単一相	子 戸 貞	
「 」 「 」 AXAが打	ままであり、中性子散乱強	水/3-メチルビリジン	淮村 包	な
000	度において系は無色透明の	なのではないか」という。	ヨピ 唐寺 氏	め
月号に掲載された。	は観測されず、すべての温	ニック液体。の実現も可能	に近瀬	~
f Japan (JPSJ) Oll	ると、目視観察では相分離	色の制御が可能な『フォト		ä
of the Physical Society o	上のNaBPh、を添加す	瀬戸准教授は「色合いや発	消え准	タ
発行の英文学術誌Journal	×10の好2乗moー/パ以	ることを初めて発見した。	谷と教	情
この成果は日本物理学会	した」という。ところが5	ぶ周期的秩序構造が形成す	ショショ	を
とになる」としている。	秩序構造ができることを示	(可視光波長スケール)に及	夜 そら	シ
る新しい原理を発見したこ	ートルから光の波長程度の	が数十ブパから数百才が		報
一液体において構造色を呈す	ふれた組み合わせでナノメ	法で観察。その結果、溶媒	D 見	表
		目視視察と中性子小角牧乱		Ρł
【フォイ()るり	C	T T	B	5
		F		1

11. Ginzburg-Landau free energy\$\op\$:composition of polar componet

(1)

$$F = \int d\mathbf{r} [f + \frac{C}{2} |\nabla \phi|^2 + \frac{\varepsilon(\phi)}{8\pi} E^2]$$

$$f = \frac{k_B T}{a^3} [\phi \ln \phi + (1 - \phi) \ln(1 - \phi) + \chi \phi (1 - \phi)]$$
(2)

$$2 - \chi = D(T - T_c), \quad \phi_c = 0.5$$
 (3)

12. 理論計算(小貫ら)によって得られた描像

13. 小貫の計算結果を用いたfitting

$$I(Q) = \frac{I_0}{1 + \left[1 - \gamma^2 / \left(1 + \lambda^2 Q^2\right)\right] \xi^2 Q^2}$$

14. 臨界指数の 3D / 2D クロスオーバー

15. 水 + 油 + 界面活性剤

16. 水を多く含む組成での実験

水ばっかりの組成(臨界組成から遠く離れた組成比) ← 普通は何も 観測されない。ここに塩を加えると、新しい構造形成が見られた。

17. $D_2O/3MP (\phi_{D2O} = 0.91) + NaBPh_4 (85mM)$

K. Sadakane, A. Onuki, K. Nishida, S. Koizumi and H. Seto, Phys. Rev. Lett., 103, 106873 (2009).

18. ラメラからの散乱を示すモデル関数

Scattering Intensity: $I(Q) = P(\zeta)$ $I(Q) = \frac{2\pi P(Q)S(Q)}{dQ^2}$

P(Q): Form factor of membran

$$P(Q) = \frac{2(\Delta \rho)^2}{Q^2} \left[1 - \cos(\delta Q) \, e^{-\sigma^2 Q^2/2} \right]$$

S(Q): Structure factor of lamell

$$S(Q) = 1 + 2\sum_{n=1}^{N-1} \left(1 - \frac{n}{N}\right) \cos\left(\frac{dnQ}{1 + 2\Delta Q^2 d^2 \alpha(n)}\right) \times \epsilon$$

Δρ: 散乱体とバルクの散乱長振幅密度差 δ: 膜厚 d: 膜間距離

F. Nallet, R. Laversanne and D. Roux, Journal De Physique Ii, 3, 487 (1993).

19. Fitting 結果から得られる膜の描像

得られた Fitting parameter (for 313K)

 $\Delta \rho = 4.90 \pm 0.01 (10^{10} \text{cm}^{-2})$

 $d = 149.7 \pm 0.6$ (Å)

 δ = 13.9 ±0.1 (Å)

散乱長振幅密度 (文献值)

D₂O: $\rho = 6.39 (10^{10} \text{ cm}^{-2})$ 3-methylpyridine: $\rho = 1.42 (10^{10} \text{ cm}^{-2})$

 $\longrightarrow \Delta \rho = 4.97 (10^{10} \text{ cm}^{-2})$

膜間距離と膜厚の関係 $\delta = \phi_{3MP} d = 149.7 \times 0.09 = 13.5$ Å

9%の3MPが膜として振る舞い、それがラメラ状に積層している

総括1 (臨界現象に対する塩の効果) $D_2O + 3MP$ (critical composition, $\phi_{D2O} \sim 65\%$) + NaBPh₄

小貫による新しいモデル関数

$$I(Q) = \frac{I_0}{1 + \left[1 - \gamma^2 / \left(1 + \lambda^2 Q^2\right)\right] \xi^2 Q^2}$$

臨界指数の 3D/2D-Ising クロスオーバー

$$I_0 = const \times (T_c - T)^{-1.24}$$

$$\xi = const \times (T_c - T)^{-0.63}$$

$$I_0 = const \times (T_c - T)^{-1.75}$$

$$\xi = const \times (T_c - T)^{-1.00}$$

総括2 (塩が界面活性剤のように振る舞う現象を発見)

 $D_2O + 3MP$ (water-rich, $\phi_{D2O} = 91\%$) + NaBPh₄ 85 mM

$$\begin{split} I(Q) &= \frac{2\pi P(Q)S(Q)}{dQ^2} \\ P(Q) &= \frac{2(\Delta\rho)^2}{Q^2} \left[1 - \cos\left(\delta Q\right) e^{-\sigma^2 Q^2/2} \right] \\ S(Q) &= 1 + 2\sum_{n=1}^{N-1} \left(1 - \frac{n}{N} \right) \cos\left(\frac{dnQ}{1 + 2\Delta Q^2 d^2 \alpha(n)}\right) \times \exp\left[-\frac{\Delta Q^2 d^2 n + 2d^2 \alpha(n)Q^2}{2\left(1 + 2\Delta Q^2 d^2 \alpha(n)\right)} \right] \frac{1}{\sqrt{1 + 2\Delta Q^2 d^2 \alpha(n)}} \end{split}$$

*** 日本の研究所一LABOより最新ニュースをお届けします!

目せくトの動画をご覧になる際の推摸提達 文字サイニを笑思 PE-J 25040 LLE 該直候協度 1024 < 768 DLL</p> プラグイン · Adulta Flash Player 9 EL上 RSSICONT REED

24. 膜間相互作用について

25. 膜間距離の温度変化は従来の膜と逆の傾向を示す

膜間距離の温度変化

中性子スピンエコー法 (nm, nsスケールのダイナミクス)

 $\Gamma = DQ^2$

原子力機構

粒子のブラウン運動 $I(Q,t) = I(Q,0) \exp \left[-\Gamma t\right]$

「:緩和係数 D:拡散係数

単層膜の波打ち運動 $I(Q,t) = I(Q,0) \exp\left[-(\Gamma t)^{2/3}\right]$ $\Gamma = 0.025\gamma_k \left(\frac{k_B T}{\kappa}\right)^{1/2} \frac{k_B T}{\eta} Q^3$

κ:曲げ弾性率

9. 中性子スピンエコーの結果

単層膜の揺らぎによる緩和

$$I(Q,t) = I(Q,0) \exp(-(\Gamma t)^{2/3})$$

Γ:緩和係数

$$\Gamma = 0.025 \left(\frac{k_B T}{\kappa}\right)^{1/2} \frac{k_B T}{\eta} Q^3$$

κ:曲げ弾性率

10. 曲げ弾性率の温度依存性

① 温度を上げると、膜は柔らかくなる

② 水に対する3MPの割合を増やすと、膜は柔らかくなる

膜間距離の温度変化は従来の膜と逆の傾向を示す

膜間に働く斥力相互作用

- 静電相互作用 (電気二重層力)
- 波打ち運動による立体斥力

高温側で膜が柔らかくなるのなら、 波打ち運動は激しくなり、 立体斥力は大きくなるはず。 膜間距離の温度変化

ザーピンセットによる局所非平衡場の構築

集光レーザーと物質との相互作用

誘起双極子
$$P = \alpha E$$

tetel,
$$\alpha = (\varepsilon - \varepsilon_0)$$

トラップカ

$$F = \frac{1}{2}\alpha \nabla E^2$$

- ・ 屈折率の高い物質を捕獲 → 非接触型のピンセット
 水の屈折率~1.3 3MPの屈折率~1.5
- ・ 定常的なエネルギーの注入 → 非平衡開放場の構築

サンプルと実験方法

サンプル:重水 / 3-メチルピリジン 混合溶液

A: 臨界組成よりも水を多く含む組成比 質量分率 (3MP) = 22 wt%

核生成による相分離

B: 臨界組成比
 質量分率 (3MP) = 27 wt%
 スピノーダル分解による相分離

実験条件

位相差観察、100倍 YAGレーザー(1064 nm) レーザー強度: 0~70 mW 温度制御:310 ± 0.1 K ガルバノミラーによるレーザースポットの空間移動

A: 臨界組成よりも水を多く含む組成比

B: 臨界組成比

1倍速

10倍速

A: 臨界組成よりも水を多く含む組成比

B: 臨界組成比

