SPring-8 BL45XU小角散乱実験ステーションの現状 + c

SPring-8の概要

●設置場所:	兵庫県播磨科学公園都市
●建設時期:	平成3年~9年(平成9年10月に供用開始)
●建設費用:	約1,100億円(供用開始時)
●施設設置者:	理化学研究所、(日本原子力研究所)
●運営主体:	財団法人高輝度光科学研究センター(JASRI)

(1)年間運転時間(平成21年度実績): 蓄積リング運転時間5,035時間、放射光利用時間(ユーザータイム)4,015時間 (2)実施課題数

- ① 年間(平成21年)共用BL利用1,391件、専用BL利用513件
- ② 平成9年10月~平成22年3月
- (3)利用者数
 - ① 年間(平成21年度)共用BL利用9,033人、専用BL利用3,905人
 - ② 平成9年10月~平成22年3月

SPring-8のビームライン

RIKEN Beamline List

	Beamline No.	Beamline name
1	BL26B1	Structural Genomics 1 (HTP-MX)
2	BL26B2	Structural Genomics 2 (HTP-MX)
3	BL32XU	Targeted proteins (µ-MX)
4	BL45XU	Structural Biology 1 (SAXS)
5	BL17SU	Coherent Soft X-ray Spectroscopy
6	BL19LXU	SR physics
7	BL29XUL	Coherent X-ray optics
8	BL43LXU	Quantum nano dynamics (Under construction)
9	BL44B2	Materials science

生命機能を視る

構造研究・物性研究からその場での直接観察による機能原理の解明へ

階層化された複雑な生体システムの機能を直接観察

X線小角溶液散乱実験はどんな場合に有効か?

Case 1. 生理学的溶液条件下での姿 分子の形、ドメインやサブユニットの相対配置 機能単位は多量体?単量体? 天然変性領域の形状

Case 2. タンパク質の構造変化 機能発現による構造変化、折れ畳過程

- Case 3. 多重機能要素タンパク質、離合集散タンパク質複合体の姿 難結晶性、分子量がNMR構造解析の上限を超える ドメイン、フラグメント毎に原子解像度構造解析
- Case 4. 結晶化が難しいタンパク質の姿が知りたい
- Case 5. 極端条件下での構造
- Case 6. 結晶化、NMR測定前の溶液性状検討

BL45XU

- 理研構造生物学 | ビームライン -

Time-resolved, Micro-beam, Anomalous Small-Angle X-ray Scattering (SAXS)

Tandem 1.5 m-undulator, Diamond Mono, K-B Mirror (7-14 keV, ><u>10¹² photons/s</u>)

Hutch A (Time-resolved SAXS) Hutch B (SAXS/WAXD)

理研構造生物学Iビームライン(BL45XU)

SAXS-station

SWAXS-station

理研構造生物学Iビームライン(BL45XU)

<u> 光源</u>

タンデム垂直アンジュレータ (真空封止、直線偏光(垂直))

周期長37mm繰り替えし数37 + 37光源サイズ0.394 mm (h) x 0.027 mm(v)発散角0.0195 mrad (h) x 0.00883 mrad (v)輝度2.2x10¹⁸ photns/s/mrad²/mm²/0.1%b.w./100mA @ 12keV

理研構造生物学Iビームライン(BL45XU)

<u>SAXS-station</u> 分光器 エネルギー エネルギー分解能 ミラー ミラー集光比 フラックス@試料位置 ビームサイズ@検出器面

ダイヤモンド2結晶分光器 (ラウエ-ブラッグ配置) 6.7 – 14.0 keV ΔE/E < 10⁻⁴ Rh-coated K-Bミラー 2.48 : 1 ~ **5 x 10¹¹ photons/sec (13.8 keV)** 0.5 mm (h) x 0.2 mm (v)

理研構造生物学Iビームライン(BL45XU)

<u>SWAXS-station</u> 分光器

> エネルギー エネルギー分解能 フラックス@試料位置 ビームサイズ@検出器面

ダイヤモンド2結晶分光器 (ブラック-ブラッグ配置) 7.5 – 14.0 keV ΔE/E < 10⁻⁴ ~ 2 x 10¹¹ photons/sec (12.4 keV)

0.3 mm (水平方向) x 0.2 mm (垂直方向)

SAXS実験ハッチ

スライド式実験定盤(4000 x 1050mm²)

検出器自動切替 ステージ

・試料周りセットアップの高い自由度

利用例:高温断熱セル DSC同時測定セル FZP集光光学系 ガストラップ装置 GI-SAXSステージ etc

ガストラップ装置

・カメラ長変更の簡易化 ~60分
・検出器変更の迅速化 ~30分

*1実験当たりのビームタイム24~48時間

多種多様な先端研究開発の機器持ち込み要求に対応

検出器

	R-AXIS IV++	6"-X線イメージイン	Flat panel sensor	
		C4880-10-14A	C7300-12-NR	C9728Dk-10
形式	IP	フルフレームCCD	インターラインCCD	CMOS
受光面積	300 x 300 mm ²	ϕ 150mm		52.8 x 52.8 mm ²
ピクセルサイズ	100 µm	130 μm	110 μm	50 µm
ダイナミックレンジ	20 bit	14 bit	12 bit	5600
最短露光時間	-	20 msec	91 µsec	3 Hz
最短撮影サイクル	露光時間 + 4 min	露光時間 + 5 sec	76 msec (38 msec)	3 Hz
	大面積、高ダイ ナミックレンジ	高感度、低ノイズ	高感度、サブ秒時 分割	WAXS同時測定用

Flat Panel Sensor C9728Dk-10

R-AXIS IV++

6"-XRII +C4880-10

溶液試料セル

20µl溶液セル 50 µl溶液セル 光路長 3mm 20µm石英窓 (光路長1mmセルも有)

目的に応じたセルの設計が可能

溶液セルフォルダー(制御温度:4~80°C) XZ電動ステージ付 *フローセル等にも対応

Stopped Flowセル

Konuma et al. (2011)

ユニソク製Stopped Flowセル ・サファイアキャピラリー Ø 2mm ・<u>100µl</u> + <u>100 µl</u>混合

II + CCDとの組み合わせで数十ミリ秒~ 時分割測定が可能

検出器-試料距離と測定レンジ

		0.9Å (13.8keV)			1.5Å (8.3keV)				
検出器	カメラ距離 (mm)	D _{min} (Å)	D _{max} (Å)	Q _{min} (Å ⁻¹)	Q _{max} (Å ⁻¹)	D _{min} (Å)	D _{max} (Å)	Q _{min} (Å ⁻¹)	Q _{max} (Å ⁻¹)
6"-XRII + C4880-10	450	5.1	141.5	0.044	1.229	8.5	235.8	0.027	0.737
	3500	44.3	1240	0.005	0.142	73.8	2066	0.003	0.085
R-AXIS IV++	450	2.5	141.5	0.044	2.531	4.1	235.8	0.027	1.519
	3500	20.7	1240	0.005	0.304	34.5	2066	0.003	0.182

※500mm単位で調整可、ビームストップ ϕ 4mm

カメラ距離450mm

カメラ距離3500mm

2.5 Å < D < 2066 Å (0.003 Å⁻¹ < Q < 2.5 Å⁻¹)の測定が可能

利用研究の高度化要求

構造生物学 静的溶液散乱 小角分解能の向上 低バックグランド、高感度測定 ハイスループット化 高速時分割、高感度測定 動的溶液散乱 低バックグランド 繊維回折 低バックグランド、高感度測定 気相散乱 ビーム安定度の向上 材料科学 低角分解能の向上 マイクロ・ナノビーム

Scatterless Slit (2011年2月導入)

 Ge単結晶ブレード
 エッジ部の結晶粒界からの 寄生散乱除去

従来スリットからの Scatterless Slitからの 散乱パターン 散乱パターン

Xenocs[®] Scatterless Slit (TC slit 3)

	Pinhole	TC Slit 3
光学系の簡素化		
		-
(1051140)廃止/		
ビームストップ小径化	による	5
小角分解能の向上		

PILATUS300K-W (2011年3月導入予定)

- 1光子計測
- バックグランドノイズなし

> 微弱散乱強度測定
 > ミリ秒時分割測定

	PILATUS300K-W
形式	フォトンカウンティング
受光面積	254 x 33.5 mm ²
ピクセルサイズ	172 μm
ダイナミックレンジ	20 bit
ピクセル当り計測速度	> 2 x 10 ⁶ photons/sec
読出し時間	2.7 msec
最短撮影サイクル	200 Hz

溶液サンプルチェンジャー(開発中)

- モジュール構造による他実験系との排他利用
- 電動ピペッター + ディスポチップ利用でのコンタミの排除
- 96ウェル試料プレートでの試料低温保存
- ▶ 創薬スクリーニングなどを含むスループットの向上

溶液サンプルチェンジャー(開発中)

- モジュール構造による他実験系との排他利用
- 電動ピペッター + ディスポチップ利用でのコンタミの排除
- 96ウェル試料プレートでの試料低温保存
- 創薬スクリーニングなどを含むスループットの向上

BL45XU-SAXS利用研究の紹介 特徴的な解析例

▪時分割測定

長周期:時計タンパク質 短周期:タンパク質フォールディング

- ・微小集光ビームによる繊維内構造研究
- ・フローセルによる連続測定
- ■希薄系(Gas-Phase)への挑戦

Kaileは脱リン酸化を動ける

リン酸化型と脱リン酸化型を24時間周期で行ったり来たりする! → 時計そのもの 秋山(名大/理研)

X線結晶構造解析 (3次売的に整列した分子)

Kai胞 (11kDa x 4量体)

Kaiタンパク質の構造が個々に解明されても、 なぜ時計として機能するかわからない。 X線小角散乱

(溶液中で自由に動く分子)

- 長所 ・・・ 生理的な溶液中での測定 リアルタイム計測
- 短所・・・
 分子の形しかわからない

Kaiタンパク質の振る舞いを その場で観察できる!

秋山(名大/理研)

試験管内で時を刻むシアノバクテリアの生物時計 SPring

主な研究成果

・ 藍藻の時計タンパク質(KaiA、KaiB、 KaiC)とATPを混ぜると、KaiCのリン酸化状 態が24時間周期で振動する。

・Kaiタンパク質の離合集散をX線小角散乱で 実時間計測し、時を刻む分子機構を解明した。

・X線小角散乱技術を向上させ、離合集散系 を解明するための計測分析として成熟させた。

・KaiCの<mark>概日性分子鼓動を可視化(世界初)。</mark> まるで心臓が拍動するかのように、形状をリ ズミカルに膨張・収縮させつつ24時間を刻む。

今後の展望

・KaiCのC1リングにあるATPase活性が周期決定因子である可能性が高い。

・時間と空間の両次元に分解能を向上させた 溶液中での計測分析技術の開発。

日本発の研究として高く 評価された。Faculty 1000 of Biologyとして 推薦を受けた。

Yamada *et al., J. Mol. Biol.* **362**, 123 (2006).
 Akiyama *et al., Mol. Cell* **29**, 703 (2008).
 Inaba *et al., J. Biol. Chem.* **283**, 35042 (2008).
 Akiyama S., J. Appl. Cryst. **43**, 237 (2010).
 Murayama *et al., EMBO J.* **30**, 68 (2011).

I.SAS Young Scientist Prize (2006年7月). Ⅱ.日本生物物理学会 若手奨励賞(2007年12月). Ⅲ.文部科学大臣表彰 若手科学者賞(2008年4月).

(Ų)

<u>折り畳みによるポリペプチド鎖の収縮</u>

折り畳み反応が遅い中間体も存在する

マイクロビームGISAXS計測システムの開発

繊維最表面近傍ほど反射は小さく明瞭である。

→ 繊維最表面近傍(skin部)は、中心部(主としてcore部)と比較して、結晶性が高く、分子鎖およびラ メラ(微結晶)の配向性が高い。ラメラ晶と非晶は繊維軸に平行に交互積層しているが、繊維最表面 近傍ほど隣接ラメラが並列する秩序性が高い。

混合系(弱会合性)溶液のSAXS測定

フローセルによる連続測定

- 会合しやすい系でも分離後の単独鎖測定が容易
- 既存の分離技術と相性が良く、カラム等で各成分を分 離精製した直後に測定が可能
 武政(理研前田バイオエ学)

光散乱の検出限界である20nm以下の分子の回転半径、 形状、剛直性等がシームレスに評価可能

武政(理研前田バイオエ学)

SPri

- ESI source generates ions continuously
- Quadrupole used either as continuous guide to pass most of the ions through to the trap or select and trap ions with m/z ratio

 Ion trap is filled with ions (limit: space-charge effects within trap) 	a few ms
 Cooling by introduction of pulse of Helium 	30 ms
 Isolation of ions of interest (ejecting all others) 	10 ms
• X row interaction	
	user defined
• Ejection	1 ms

Gas-Phase Scattering

The challenges ...

SAXS on solutions of biomolecules (e.g. proteins): 10¹¹ – 10¹³ particles (in 1-2 mm³)

minimum number of ions which can still be detected on MS detector: a few 100s of particles

maximum number of ions which can be trapped ("*trapping capacity*"): $10^6 - 10^7$ particles

High-throughput ion trap mass spectrometer: reliable and efficient trapping of ions

Weak scattering signal from biomolecules: powerful x-ray source

Low background from experimental set-up: complete integration of DIT in beamline

Grossmann(Liverpool Univ. /RIKEN)

XFELの利用

X線自由電子レーザー (波長0.06 nm の硬X線を発振) の特徴

- ◎ <u>強いピーク輝度</u> [SPring-8の10億倍]
- ◎ <u>狭いパルス幅</u> [SPring-8の1000倍=fsec パルス(10兆分の1秒)]
- ◎ <u>高いコヒーレンス度</u> [SPring-8の1000倍=コヒーレント度100%)]

X線自由電子レーザーの8GeV線形加速器

X線波長:0.06 nm、ピーク輝度:SPring-8の10億倍、 パルス幅:80 fsec 以下、完全空間コヒーレンス、パルス間隔:60Hz

+

仮置き

10 140

定盤

@BL29XUL 2nd Hutch, February 2010

SPring

サブミクロン非結晶粒子からのコヒーレントX線回折パターン

実験回折パターンからの位相回復 (HIO + shrink wrap)

Resolution: 60.5 nm Retrieved image 512² (E ~1.3%)

慶應 坂本

1000 nm

250 nm

EM image

マイクロビームの利用 微小結晶構造解析

The development of basic and innovative technology

Protein micro-crystallography

X-ray crystallography of proteins related to human disease and aging. Micro-beam optimized for Micro-crystal

Beam profile of SPring-8 BL41XU

SPring-8

Design concept of BL32XU

- 1. Brilliant source
- 2. Simple components
- 3. Focusing X-rays with large magnification factor
- 4. Changeable beam size at sample position

Focusing beam size @ BL32XU

EEM-mirrors (Osaka Mirror)

Vertical Beam Profile at 12.4keV

Beam Size(FWHM)	0.9 μm(H) x 0.9 μm(V)
Photon Flux	6.2 x 10 ¹⁰ photons/sec

Challenges in the World

Comparison with micro-MX beamlines

Facility	Beamline	Vert (μm)	Width (µm)	Flux (phs/sec)	Flux density (phs/sec/ μ m²)
APS	23-ID-B	4.8	6.2	4.7 × 10 ¹⁰	1.6×10 ⁹
ESRF	ID23-2	7.5	5	4.0×10^{11}	1.1 × 10 ¹⁰
	ID13	1.0	1.0	1.0 × 10 ¹⁰	1.0×10 ¹⁰
SLS	X06SA	25	5	1.0 × 10 ¹²	8.0×10^{9}
	X10SA	50	5	1.0 × 10 ¹²	4.0×10^{9}
SPring-8	BL32XU	<u>0.9</u>	<u>0.9</u>	<u>6.2 × 10¹⁰</u>	<u>7.6×10¹⁰</u>
		19.3	7.2	6.7 × 10 ¹²	4.8×10^{10}
	BL41XU	Ф12	μm	2.8E+11	2.5 × 10 ⁹

BL32XU can utilize

the smallest and highest flux density beam in the world

http://biosync.rcsb.org/international.html

(Nov. 29, 2009)

The first diffraction image (09/12/04)

Crystal : Lysozyme 5μm crystal Beam : 1μm square, with 2.6 x 10¹⁰ photons/sec. Exposure time : 1 sec.

Resolution limit : 2.0 Å

Data collection limit by crystal size

Black : Protein crystals 10^{6} Small molecule crystals White : 10^{4} 10 $V_{\rm ext}^{\rm ext}$ [hm3] Predicted volume limit 4 $\square 3$ $\Box l$ 10^{0} 口2 $\Box 1$ Protein crystal @ BL32XU 10^{-2} 10^{12} 10^{10} 10^{14} 10¹⁶ S

Acta Cryst. (2008), D64, 158-166

Formula of diffraction power

$$S = (F_{000} / V_{cell})^2 \times \lambda^3 \times V_{cryst}$$

We collect a 2 Å resolution data from $1x1x2 \mu m^3$ lysozyme crystal.

 7×10^6 copies of unit-cell

BL32XU open the new field of Protein micro-crystallography

放射光タンパク質結晶構造解析の展開

さらに構造を知る

謝辞&共同研究者

BL45XU-SAXS ユーザ 名古屋大・秋山グループ 岐阜大・藤澤グループ 京都工芸繊維大・佐々木グループ 理研和光・前田ナノバイオ研究室 Liverpool大・G. Grossmanグループ 全てのユーザの皆様

BL45XU-SAXS スタッフ

- •引間 孝明
- ・伊藤 和輝(現リガク)
- ・八木 直人(JASRI)
- ・佐藤 衛(横浜市大)
- •山本 雅貴

CXDM(BL29XUL)

- ·中迫 雅由(慶応大)
- 高山 裕貴(慶応大)
- •山本 雅貴
- •引間 孝明
- ・米倉 功治
- ·西野 吉則(北大)
- ・前島 一博(遺伝研)
- ・高橋 幸生 (阪大)

BL32XU

- •平田 邦生
- •河野 能顕
- •橋本 浩一
- •二澤 宏司
- •村上 博則
- •上野 剛
- •山本 雅貴