

1

核融合中性子源A-FNS計画と イメージングへの利用の検討

量子科学技術研究開発機構 六ケ所核融合研究所 核融合中性子源設計グループ 太田雅之, 増田開

中性子イメージング専門研究会 2019/12/25 - 26 京都大学熊取キャンパス

背景 ~核融合中性子源の必要性~

参考文献: J. Knaster et al., Nucl. Fusion 57 (2017) 102016.

- 核融合原型炉(DEMO炉)では、構造材料が
 中性子照射により、80 dpa程度まで強い損
 傷を受ける
- 核融合原型炉のアクションプランに基づき、
 2035年頃までに20 dpaの照射データが必要
- 最低限10 dpa/fpy (full power year)の核融合
 炉材料の照射試験が必要
- 既存のDT中性子源では、強度が不十分 (10⁴倍程度必要)
- その他の中性子源では、He/dpa比の観点 から不適当(He/dpa=10程度が必要)

d-Li反応によって14 MeV相当の中性子を 発生させる大強度の核融合中性子源が必要

IFMIF工学実証及び工学設計活動(IFMIF/EVEDA)事業の成果を活用 ▶ 核融合中性子源A-FNSを早期に実現

背景~IFMIF/EVEDA事業を基にしたA-FNS計画~ 🥝 QST

液体リチウムループの実証試験を完了

A-FNSの基本パラメータ

ビーム種	重陽子
エネルギー	40 MeV
電流	125 mA
ビーム幅	200 mm
ビーム高さ	50 mm
ターゲット	液体リチウム
ターゲット温度	250 °C
ターゲット厚さ	25±1 mm
ターゲット流速	15 m s ⁻¹
中性子発生強度	6.8 x 10 ¹⁶ n s ⁻¹
ターゲット背面での中性子束	6.0 x 10 ¹⁴ n cm ⁻² s ⁻¹

A-FNSの照射場 (Total Neutron Flux)

A-FNSの照射場 (Total Neutron Flux)

核融合利用での照射試験モジュールを設置

応用利用の検討

応用利用の検討

核融合炉の材料や機器の照射試験だけでなく、基礎研究・産業や医療・ エネルギー応用への展開を図る

中性子束、照射期間などの観点から、核融合炉材料の 照射試験に影響を与えない中性子応用利用を検討

ビーム孔の簡易評価

今回はコンクリートによる 散乱成分は考慮せず、直 接成分のみを簡易評価

L/D≈100

計算コード

モンテカルロ粒子輸送計算コード MCNP5-1.51 (d-Li反応用ソースサブルーチン McDeLicious-11、またはSDEFカードを使用)

核データ

核融合炉用核データライブラリー FENDL-3.1d

試験モジュールなしの場合

※スペクトル形状は、 現時点で、計算精度が 悪いため載せていない

試験モジュールなし(D_2 Oモデレータ)の場合(1)

試験モジュールなし(D₂Oモデレータ)の場合(2)

青森のくらし

ビーム孔簡易評価結果(モデレータ無し、試験モジュール無し)

		E _n [MeV]	Integ. Flux [n/cm²/sec]	L/D	Beam Dim. [cm]	CW/ Pulse
	0 deg.	(5 – 30)	(7E10)	(100)	(Φ6)	CW
A-FNS	90 deg.	(0.1 - 20)	(6E9)	(90)	(Φ6)	CW

「中性子イメージングカタログ/中性子施設ハンドブック」※に、

『高速中性子イメージング』の記述が無い!?

(一覧表中のFRM IIの1行を除く)

ニーズが無いからか? ソースが無いからか?

何を目指すべきか?

高速中性子イメージング施設(一部)の比較

		E _n [MeV]	Integ. Flux [n/cm²/sec]	L/D	Beam Dim. [cm]	CW/ Pulse	
	0 deg.	(5 – 30)	(7E10)	(100)	(Ф6)	CW	
A-FNS	90 deg.	(0.1 - 20)	(6E9)	(90)	(Φ6)	CW	
nuclear reactor-based							
YAYOI 💥		<e<sub>n>~1.3</e<sub>	5E6 2E7	74 39	45 x 45 Φ20	CW	

2-4E9 n/cm² by 20-60 min

PP + X-film

@YAYOI

PP: ZnS(Ag) + CCD

PP: ZnS(Ag) + CCD

S. Fujine et al., *NIMA* **424** (1999) 190.

※ H22年度停止、廃止措置。

何を目指すべきか?

高速中性子イメージング施設(一部)の比較

		E _n [MeV]	Integ. Flux [n/cm²/sec]	L/D	Beam Dim. [cm]	CW/ Pulse
	0 deg.	(5 – 30)	(7E10)	(100)	(Ф6)	CW
A-FNS	90 deg.	(0.1 - 20)	(6E9)	(90)	(Φ6)	CW
	? deg.	?	?	?	?	?
nuclear rea	actor-based					
YAYOI💥		<e<sub>n>~1.3</e<sub>	5E6 2E7	74 39	45 x 45 Φ20	CW
FRM II		<e<sub>n>~1.9</e<sub>	3E7 4E8	800 200	< 35 x 35	CW

単純に、Flux ∝ L⁻² と考えると

90 deg. では FRM II の 1/10程度。 0 deg. (試験モジュール無し) なら FRM II と同程度。 前方 ? deg.で試験モジュールを回避できるか?

高速中性子イメージング の 一般的な特長

● 減弱係数が小さい (熱中性子と比べて。X/γと比べても特に高Zで)

● 線減弱係数のZ依存性が弱い

➤ X/γ や 熱中性子 では難しい「厚い」対象物のイメージング。

▶ 高Z中の低Zのイメージングでも、その逆でも、同等のコントラスト。

▶ 熱中性子と比べて「放射化の程度が低い」らしい。本当か?

<u>劣化ウラン円筒中のアルミ合金製トウ</u> ガラシ模型ほかの透過像(左)とCT断 面像(右)

R.O. Nelson et al., *J-Imaging* **4** (2018) 45

高速中性子イメージャ1(シンチレータ)

高速中性子 ⇒

- 小さい断面積 ⇒ 効率 vs. ボケ の<u>トレードオフ</u> (コンバータ厚さ) A-FNS前方では、ますます厳しいかもしれない。
- 反跳陽子の利用 ⇒ <u>シンチレータ内飛程</u> が 空間分解能 を決めるかも知れない ~0.2 mm@ 3MeV ~2 mm@15MeV ← A-FNS前方

PP: ZnS(Ag) シンチレータ 2 mm t, 1.5 mm res. @ <En>~ 1.3MeV (YAYOI) 2.4 mm t, ~1 mm res. @ <En>~ 1.9MeV (FRM II)

PVT: X-Flrpic シンチレータ 2.4 mm t, 0.6 mm res. @ <En>~1.7MeV, En<3.2MeV

高速中性子イメージャ 2 (コンバータ+フィルム/IP) GQST

直接法: PE or PP コンバータ・・・シンチレータと同じ潜在的課題 in 分解能。

転写法: PE/PPコンバータのような分解能制約はないハズ。しかも X/γ-blind。

¹¹⁵In(n,n')^{115m}In ··· E_{n,thr}~0.5MeV, ~2barns @ 3-9MeV, 高速/熱~10が必要[1]

⁶³Cu (n,2n) ⁶²Cu

- $E_{n,thr} \sim 11 \text{ MeV}$
- >0.6 barns @ E_n >15 MeV

• $T_{1/2} = 9.7 \text{ min}, \beta^+$

DT管(~10⁴ n/cm²)によるCu転写法とPE直接法の比較[2]

	厚さ [mm]	分解能 [mm]	PSL/n	PSL /δPSL
PE-直接法	5.00	1.3	2.1E-3	28
Cu-転写法	0.25	0.5	5.3E-6	62

Cu-転写法 for 静止画、CT
✓ A-FNSでは、11MeV 以上も豊富
0-deg: 2E3 PSL/mm² by 1-sec irrad.
90-deg: 3E1 PSL/mm² by 1-sec irrad.
✓ 潜在的に高分解能が可能
✓ CWでも低BG: X/γ に不感
✓ CWでも散乱成分除去(どの程度?)

[1] M. Kobayashi et al., *Prog. Nulc. Sci. Tech.* **6** (2019) 58. [2] V. mikerov et al., *NIMA* **542** (2005) 192.

何を目指すべきか?

高速中性子イメージング施設(一部)の比較

		E _n [MeV]	Int. Flux [n/cm²/sec]	L/D	Beam Dim. [cm]	CW/ Pulse
0 deg.		(5 – 30)	(7E10)	(100)	(Φ6)	CW
A-FNS	90 deg.	(0.1 - 20)	(6E9)	(90)	(Φ6)	CW
	? deg.	?	?	?	?	?
nuclear rea	ctor-based					
YAY	SI <mark></mark> ₩	<e<sub>n>~1.3</e<sub>	5E6 2E7	74 39	45 x 45 Φ20	CW
FRM II		<e<sub>n>~1.9</e<sub>	3E7 4E8	800 200	< 35 x 35	CW
large-scale	accelerato	r-based				
LAN	SCE	0.6 - 400	2E6 @20m	300H /700V	30 x 20	Pulse
PTB Cyclotron <e<sub>n>~5</e<sub>		<e<sub>n>~5.5</e<sub>	1E7 @1m			Pulse
A-FNSも技術的にはパルス化できる(加速器なので)。 パルス化する価値はあるか?						

※ H22年度停止、廃止措置。

高速中性子イメージングにおける TOF

● エネルギー分解

⇒ 物質識別イメージング

- 線源由来ガンマの除去
- 散乱成分の除去
 ⇒ 高コントラスト化、高分解能化

熱/熱外ほどではないかもしれないが、 パルス化のメリットは、やはり大きい。

@LANSCE R.O. Nelson et al., J. Imaging 4 (2018) 45

A-FNS の パルス化

23

加速器なのに、パルス化は簡単ではない。

- ✓ 材料照射向けCW運転が常に必要。パルス運転用マシンタイムを取る余裕がない。
- ✓ したがって、キッカによるパルス切り出し(最大1%程度まで)と追加ターゲットが必要。
- ✓ 高速中性子TOF(~nsec)の場合は、シングルバンチキッカの開発も必要。
 熱/熱外n-TOF(tens µsec)の場合は、もう少し簡単(パルス電磁石で可能)。

簡単ではないが可能。見合う魅力もあるかもしれない。

Fast n-TOF	Width [nsec]	Rep. Rate [MHz]	E _d [MeV]	l _d [mA]	Target	<e<sub>n> [MeV]</e<sub>	n flux [n/sec/cm²]
PTB Cyclotron	1.5	2	12	0.002	3mm Be	5.5	2E4
A-FNS with S.B.K. (1/100 extraction)	0.63 0.16	1.75	5 40	1.250	?	?	?

Cf. "FNS"では 0.4MeV, 20mA onto 回転ターゲット

まとめ

- A-FNSは未だ概念設計フェーズ。運転開始は2030's。
- ●大強度CW加速器中性子源 5MW:
 - ◆ 線源強度は高い ~7E16 n/sec CW
 - ◆ 高安定、高稼働率(が求められる) 24h/日、8ヶ月/年
- ミッション(核融合材料照射)に使われるのは、前方(DT-like)のごく一部だけ。

- 何を目指すべきか? どうしたら役に立つか? 未だ結論は無い。
- ●特にイメージングについての検討は、「これから」。

熱 / 高速? CWだけ / n-TOFも?

役に立つ中性子施設に仕上げたい 潜在的ユーザ や 先人 の 声 を 聞きたい