

~沸騰流動系可視化定量評価の新展開~

- ・非均一加熱場におけるマイクロチャネル熱交換器内流動挙動
- ・急冷現象時の液沸騰挙動

○ 阪井 広幸・折戸 敬一郎・舩倉 陸
○ 藤原 弘樹・鈴木 直翔
陰山 拓実
小畑 公作・柴田 滉平
梅川 尚嗣 教授・網 健行 准教授(関西大)
齊藤 泰司 教授・伊藤 大介 助教(京大炉)

2019年12月25-26日 中性子イメージング専門研究会

~沸騰流動系可視化定量評価の新展開~

- ・非均一加熱場におけるマイクロチャネル熱交換器内流動挙動
- ・急冷現象時の液沸騰挙動

○阪井広幸・折戸敬一郎・舩倉陸
○藤原弘樹・鈴木直翔
陰山拓実
小畑公作・柴田滉平
梅川尚嗣教授・網健行准教授(関西大)
齊藤泰司教授・伊藤大介助教(京大炉)

研究背景

『マイクロチャネル熱交換器』

複数のマイクロチャネル(微細流路)を内部に有する プレートをフィンとし使用

~目的~

非均一加熱下におけるマイクロチャネル熱交換器 内部流動構造の可視化定量評価

実験装置

Physical properties

		T_{sat} [deg.C] (Psat = 0.1 MPa)	P _{sat} [MPa]	σ [mN/m]	μ_L [mPa·s]	$\frac{\rho_L / \rho_G}{[\text{ kg/m}^3]}$	H _{lg} [kJ/kg]	μ _m [cm ² /g]
R32	CH ₂ F ₂	-52	1.47(Tsat = 20 °C)	7.86	0.120	24.0	280.8	1.025
Water	H ₂ O	100	0.1	58.9	0.282	1602.2	2257	2.679
Ethanol	C ₂ H ₅ OH	78.3	0.1	15.2	0.439	444.2	849.7	3.161
Methanol	СНзОН	64.5	0.1	18.9	0.326	612.6	1101.7	3.025

中性子ラジオグラフィ~原理・可視画像~

中性子ラジオグラフィ~質量減衰係数~

 $\phi = \phi_0 \exp(-\mu_m \rho \delta)$

の可視化に有効な手段

京都大学原子炉実験場(B-4 port)

B-4 port

.

Table1-1 Spec of KUR (B-4port)

Nuclear reactor	KUR (B-4port)		
Thermal output	1 MW (Max:5 MW)		
Neutron flux	$1 \times 10^7 \mathrm{n/cm^2 s}$		
Typical spectrum	1.2 Å		
Guide tube length	11.7 m		
Guide tube cross section	$10~(D_w)~~ imes~75~(D_h)~~mm$		

カメラ	神戸大C-CCD			
	PIXIS1024B (Princeton Instruments)			
	1024×1024 pixels			
	16 bit			
レンズ	NIKKOR 105 mm F1.4			

コンバータ ZNSL-L100-AL1010 (CHICHIBU FUJI Co.Ltd) Gd/LiF 製 塗布厚 100 µm

品名	中性子用シンチレータ ZNSL-L100-AL1038			
規格	100 × 100mm			
塗布厚	100 μ m			
仕様	高空間解像度用			
保 株式会社秩父富士				

測定精度の評価~中性子線の非平行性~

Object – Converterのキョリ関係による ボケへの影響度を調べる必要がある!

						(11111)
L_{o-c}	L_{p-o}	U_{gh}	U_{gw}	D _h	D _w	L
5	2495	0.15	0.02			
30	2470	0.91	0.12			
55	2445	1.68	0.22		10	2700
105	2395	3.28	0.43	75	10	2500
205	2295	6.69	0.89			
305	2195	10.42	1.39			

$$L_{o-c} \le R \frac{L}{D_p}$$

 R : Pixel size

測定精度の評価~中性子線の非平行性~

5M 5s L 2500mm 105mmF1.8 Kobe Univ. Camera

 $L_{o-c} = 5 mm$

 $L_{o-c} = 55 mm$

 $L_{o-c} = 205 \ mm$

 $L_{o-c} = 30 mm$

 $L_{o-c} = 105 mm$

 $L_{o-c} = 305 \ mm$

測定精度の評価~中性子線の非平行性~

<均一加熱 $G = 150 \text{ kg/m}^2 \text{s}$, $q = 38 \text{ kW/m}^2$, xeq = 0.1 > 露光時間 $1 \text{s} \times 20$

ボイド率まで画像処理したうえで 20枚の画像を合成

α	
0	暗
1	明

<均一加熱 $G = 150 \text{ kg/m}^2 \text{ s}$, $q = 38 \text{ kW/m}^2$, xeq = 0.1 > 露光時間 $1 \text{s} \times 20$

ボイド率まで画像処理したうえで 20枚の画像を合成

実験結果~均一・非均一加熱時のT.S.内の流動変動~

総投入熱量 一定 $G = 150 \text{ kg/m}^2 \text{s}$ xeq = 0.1 (出ロクオリティ) 250fps 1/400sec 30s

→ ボイド率まで画像処理を行い、25枚の時間移動平均を掛けている

非均一加熱 (
$$q_H/q_L = 2$$
)
 $qL = 26.5 \text{ kW/m}^2$

非均一加熱 $(q_H/q_L = 4)$ $qL = 16 \text{ kW/m}^2$

qL qH

実験結果~均一・非均一の差圧の違い~


```
G = 150 \text{ kg/m}^2 \text{s} xeq = 0.1
```


2019年12月25-26日 中性子イメージング専門研究会

~沸騰流動系可視化定量評価の新展開~

- ・非均一加熱場におけるマイクロチャネル熱交換器内流動挙動
- ・急冷現象時の液沸騰挙動

○ 阪井 広幸・折戸 敬一郎・舩倉 陸
 ○ 藤原 弘樹・鈴木 直翔
 陰山 拓実
 小畑 公作・柴田 滉平
 梅川 尚嗣 教授・網 健行 准教授 (関西大)
 齊藤 泰司 教授・伊藤 大介 助教(京大炉)

研究背景

再冠水過程(クエンチ現象)

原子炉のLOCA時や鉄鋼の焼入れ時に発生

研究背景

再冠水過程(クエンチ現象)

原子炉のLOCA時や鉄鋼の焼入れ時に発生

研究背景

クエンチ点近傍の熱輸送

従来の方法ではクエンチ点近傍の蒸気生成機構が不明 ⇒過熱させた管に注水,冷却させることで熱伝導の 影響を観測

研究背景

クエンチ点近傍の熱輸送

時間分解能について (10,000fps)

u=0.14[m/s]

使用機材 増感装置 光I.I Hamamatsu C4412 MCP1段 V8070

カメラ PhotoronAX-50(ISO40,000)

コンバータ PSI 6LiF/ZnSAg 200µm

撮影条件 フレームレート **10,000**[fps]

空間分解能 0.255mm/pixel

露光時間 1/10,000[s](フルオープン)

40分の1倍速で再生

時間分解能について

時間分解能について

時間分解能について

実験装置

実験装置

実験装置(2019年11月実験)

実験装置(2019年 8月実験)

撮影装置

撮影装置

可視化領域 流速u=0.18[m/s] 等倍速

流速u=0.18 クエンチ対注水実験

共通の情報

フレームレート 1000fps

露光時間 1/2000[s]

再生速度 20分の1倍速

流速 0.18m/s

入口部到達後から 2秒間

逆環状流を中性子ラジオグラフィを用いて可視化することで 以下の知見が得られた

- ・定量評価を行うには1/100[s]程度の露光時間が必要となる
- ・上流側と中流部側では急冷に至るプロセスが異なる