Current status of the µPIC-based neutron imaging detector at J-PARC (and beyond)

Joe Parker CROSS

MPGD16 & ActiveTPC3合同研究会 RIKEN 7 December 2019

RADEN and µNID development members

CROSS	Joe Parker (µNID Lead Developer)		
	Hirotoshi Hayashida	Yoshihiro Matsumoto	
JAEA/J-PARC Center	Takenao Shinohara Kenichi Oikawa (BL10) Takeshi Nakatani Kosuke Hiroi	Tetsuya Kai Masahide Harada (BL10) Yusuke Tsuchikawa Yuhua Su	
Nagoya University	Yoshiaki Kiyanagi		
Kyoto University (µNID development)	Toru Tanimori	Atsushi Takada	

J-PARC (Japan Proton Accelerator Research Complex)

BL22/RADEN – neutron imaging at the MLF

- 7 public beam lines operated by JAEA/CROSS
- BL22/RADEN is dedicated neutron imaging beamline
- In user operation since 2015

Neutron imaging at RADEN

Conventional

- CCD camera detectors: 50-300µm spatial resolution, no TOF
- Radiography and computed tomography

Energy-resolved

- Event-type detectors: sub-mm spatial and subµs time resolutions, neutron energy via TOF
- Energy-dependent neutron transmission: macroscopic distribution of microscopic quantities

Radiography

Beam-time utilization at RADEN

Ongoing R&D (at RADEN and around the world)

- Development and validation of energy-resolved techniques
- Development of suitable imaging detector

vrement types for JFY 2015-6

Other

Radiography/ tomography (33%)

Detector requirements

- Sub-µs time resolution for accurate time-of-flight
- Strong background rejection
- Sub-mm to sub-100µm spatial resolution
- Moderate to large field-of-view (10x10cm² ~)
- Mcps-order or higher count rate

µPIC-based neutron imaging detector (µNID)

µPIC-based neutron imaging detector (µNID)

Neutron detection via n + ${}^{3}\text{He} \rightarrow p$ + t

Overall track length ~4 mm in gas

- Gaseous time-projection-chamber
 - CF_4 - iC_4H_{10} -³He (45:5:50) at 2 atm
 - µPIC micropattern readout
 - Compact ASIC+FPGA data
 encoder front-end
- 3-dimensional tracking (2D position + time) with time-over-threshold
 - Accurate position reconstruction
 - Strong gamma rejection

µPIC-based neutron imaging detector (µNID)

µNID performance and usage at RADEN

Base performance characteristics			
Active area	10 x 10 cm ²		
Spatial resolution	0.1 mm		
Time resolution	0.25 µs		
γ-sensitivity	< 10 ⁻¹²		
Efficiency @25.3meV	26%		
Count rate capacity	8 Mcps		
Effective max count rate	> 1 Mcps		

Usage at RADEN	2018A	2019A
μNID	34 days	30 days
Other event-type	36 days	25 days

µNID used primarily for Bragg-edge, magnetic imaging, and phase-contrast imaging measurements at RADEN

Image of Gd test target

Fine spatial resolution using template fit to TOT distribution

Automated measurements

- Increased rate and integrated control
 - Perform complex measurements more easily
- Computed tomography with TOF
 - Quantify effects of scattering, beam hardening, etc.
 - Combine with energyresolved imaging techniques
- Dynamic samples
 - Fold TOF with motion/process frequency
 - Currently limited to cyclical processes

Computed tomography (CT)

Magnetic imaging of running motor

K. Hiroi et al., J. Phys.: Conf. Series 862 (2017) 012008

Continuing development of the µNID

• Development since 2014

- Upgraded encoders with Gigabit Ethernet (and 2Gb memory)
- Optimized gas mixture and offline analysis for improved rate, spatial resolution
- New DAQ control hardware/software for full integration into RADEN control system; GUI for offline analysis
- Continue refinement of clustering algorithm to utilize full hardware rate capacity (10 Mcps order) and improve offline processing speed (GPU processing)
- Upgrade FPGA encoder firmware to incorporate data buffering for increased rate capacity above 10 Mcps
- Investigate new gas mixtures for increased efficiency, optimized event size (increase stopping power)

New µNID development

- Small-pitch MEMS µPIC
- µNID with Boron converter

215µm-pitch MEMS µPIC for improved spatial resolution

- 215µm pitch µPIC on silicon, glass substrates using MEMS manufacturing (DNP)
- Gain stability measured at RADEN
 - Silicon shows poor stability
 - Glass similar to PCB µPIC

µPIC gain stability at RADEN

Imaging with the 215µm MEMS µPICs

215µm pitch Silicon substrate 400µm pitch PCB µPIC 215µm pitch Glass substrate

- Image quality for glass substrate looks good
- Resolution appears to be improved compared to PCB µPIC

Note: measurement statistics are different for each image

Boron converter for increased rate

- 3x smaller event size compared to ³He
 - Trade-off in spatial resolution
- µNID with flat boron converter for proof-of-principle
 - Thin, 1.2µm ¹⁰B layer \rightarrow <u>low</u> <u>efficiency</u> (3~5%)

Initial testing at RADEN

- Maximum count rate of 22 Mcps <u>confirmed</u>
- Spatial resolution of 0.45 mm <u>confirmed</u>

Next:

- Preparing dedicated Boron-µNID system
- Optimize gas for shorter track lengths
- Design new converter for increased efficiency

Performance of the μNID at RADEN

Current and projected performance of the µNID at RADEN

µNID beyond RADEN

- Forward detector for SANS at MLF BL15/TAIKAN
- Interest from pulsed neutron imaging beamlines at facilities from abroad

Performance of various neutron imaging detectors

MPGD16 & ActiveTPC3合同研究会 7 December 2019 J. Parker

µNID for small-angle neutron scattering (SANS) at BL15/TAIKAN

- Fine spatial resolution of µNID to measure very small-angle scattering
- Detector must be adapted for use in vacuum; may need to optimize detector design for reduced background
- SANS test at BL22 on 12/18; dedicated SANS detector next fiscal year

µNID at international facilities

ESS under construction User operation from 2023

VENUS started construction

- Interest from other current and upcoming pulsed neutron imaging beam lines
- Test at ESS/ODIN test beam line, located at Helmholtz Zentrum Berlin, carried out in July 2019

In operation since 2018

Summary

- Development of the µNID at RADEN is ongoing and its usage is steadily increasing
- Continuing development of standard µNID for improved rate performance, ease-of-use
- New µNID development
 - Promising test of small-pitch µPIC on glass substrate → prepare larger-area test element
 - Confirmed operation of μNID with boron converter \rightarrow prepare dedicated Boron- μNID detector system
- µNID receiving significant interest from other pulsed neutron imaging facilities around the world
 - Carried out detector test at ESS/ODIN test beamline at HZB in July 2019