令和3年1月6日

1

中性子イメージング専門研究会

透明単結晶シンチレータGAGGの導入による 高分解能中性子ラジオグラフィの実現

伊勢川和久1, 栗田圭輔1, 瀬戸山大吾2, 篠原武尚1

- 1 日本原子力研究開発機構
- 2 豊田中央研究所

高分解能中性子ラジオグラフィ

- 中性子ラジオグラフィはX線ラジオグラフィに対して、元素 感度等について相補的であるが分解能で大きく劣る
- 高分解能(10 µm以下)実現のために様々なアプローチが 検討されている

両立させられるシンチレータ材の改良に着目

目的

- ◆CMOSカメラを用いてSiemens Starを撮像し, Gd₃Al₂Ga₃O₁₂:Ce (GAGG:Ce)シンチレータの評価を行う
- GAGG:X線向けに開発された透明な単結晶シンチレータであり光の散乱が少ないため、厚くても高分解能が期待できる^{K. Kamada, et al., J. Cryst.} Growth 352, 88 (2012).
- SPring-8の豊田ビームラインで使用している撮像系を中性子へ応 用し,高分解能化を図る
- GAGGの中性子ラジオグラフィへの適用は世界初

• 簡単な遮蔽を組み, 倍率とL/Dを変えて3種のシンチレータ を比較評価

@BL22 RADEN in J-PARC MLF

中性子波長:1.50~6.48 Å

CMOSカメラ(ORCA Flash4.0-V3, 浜ホト)

シンチレータ P43 (Gd₂O₂S:Tb) (10 µm厚) GAGG (100 µm厚) GAGG (10 µm厚)

シンチレータ+ Siemens Starターゲット

結果-目視

• 多くの条件で一番内側の10.0 µm幅の間隙が観測できた

100 µm GAGG, 2倍, L/D=300の測定結果.

従来の RADENの 結果との 比較

以前の測定系による結果と比較すると圧倒的な高分解能
 を実現できた

CCD, 30 µm P43, ×1, L/D=400, 撮像時間33分.

CMOS, 100 µm GAGG, ×2, L/D=300, 撮像時間30分.

分解能評価方法 ① MTF (Modulation Transfer Function)分解能

• 画像のコントラストから分解能を算出

② FRC (Fourier Ring Correlation)分解能

同じ測定を2回行ってそれぞれ規格化後フーリエ変換し、振幅の相 関を算出して画像の信頼性を求める $FSC(k_{i}) = \frac{\sum_{r \in r_{i}} F_{1}(k)F_{2}(k)^{*}}{\sqrt{\sum_{r \in r_{i}} F_{1}^{2}(k)\sum_{r \in r_{i}} F_{2}^{2}(k)}}$ Amplitude 0.8 FSC 0.6 Threshold 0.4 0.2 0 交点の逆数から 0.05 0.1 0.2 0.15 0.25 分解能が求まる k (pixel⁻¹)

結果-分解能

• 分解能10 µmを切りつつある他施設に追いつく数値を実現

2倍, L/D=300の分解能.

	Resolution / µm		
	MTF	FRC	
P43 (10 µm)	13.8	14.2	
GAGG (100 µm)	10.5	14.1	
GAGG (10 µm)	11.7	13.7	
P43 (30 µm) (1倍, L/D=400)	35.9	28.1	

他施設の分解能.

	Resolution / µm
ISIS/IMAT	18 (MTF)
LANL ERNI	11 (MTF)
HZB CoNRad	7.4 (MTF)
PSI (microscope)	5.4 (FRC)
NIST (重心計算)	2 (その他)

▶ 100 µm厚のGAGGが最も良い分解能を示した
 ▶ 中性子顕微鏡や重心計算とはまだ隔たりがある

ピーク位置:P43:GAGG100:GAGG10 ≈ 4:2:1 透過率(%):P43:GAGG100:GAGG10 ≈ 31:0.16:52 > GAGGの組成の調整によりS/B比をもっと大きくしたい

まとめと展望

- 簡易な測定システムを用いて10 µmの分解能を実現した
- 透明単結晶のGAGGは光の散乱が小さいため、従来の P43に比べ厚くても高分解能を示した
- 同位体Gdを用いない安価な高分解能撮像の可能性が開けた
- ➤ GAGGの組成を中性子用に調整することで,中性子顕微鏡や重心計算に迫る分解能が実現できるだろう

撮像系の具体的な改良

- GAGGの高輝度化
 GAGGを開発した東北大のグループと共同開発中
- ・ 光学系の改良
 ピント調節機構の開発,高倍率レンズの導入,
 光IIの導入,高輝度光学系の導入
- 分解能評価方法の改良

分解能とレンズ収差を同時に観察できる格子状のインジケータを設計

ご清聴ありがとうございました

結果-条件による比較-1倍OPEN1 (L/D=230)

10 µm GdOx.

結果-条件による比較-1倍OPEN2 (L/D=400)

10 µm GdOx.

10 µm GdOx.

100 µm GAGG.

10 µm GAGG.

10 µm GdOx.

100 µm GAGG.

10 µm GAGG.

分解能の算出

• FRCの方がMTFよりやや大きい値を与える

Magnification	1			2				
L/D	230		400		180		300	
Method	MTF	FRC	MTF	FRC	MTF	FRC	MTF	FRC
P43 (10 µm)	23.8	29.9	25.5	30.8	12.9	13.9	13.8	14.2
GAGG (100 µm)	16.6	24.9	15.0	24.2	13.0	13.8	10.5	14.1
GAGG (10 µm)					12.6	13.6	11.7	13.7

※単位はすべてµm. ※pixelと実長はCMOSの素子の大きさ6.5 µm/pixelを用いて変換.

シンチレータごとの輝度分布

