中性子ラジオグラフィ法による流通式 水熱合成装置における混合過程の可視化

¹⁾ 名大・工,²⁾ 東北大・工,³⁾ 神戸大・工,⁴⁾ 京大・複合原子力研

高見 誠一¹, 佐藤 公星¹, 久保 正樹², 塚田 隆夫², 杉本 勝美³, 大平 直也⁴, 伊藤 大介⁴

Hydrothermal synthesis of metal oxide nanoparticles

Hydrothermal synthesis reactors

Reaction time

~ 5 min

T.Adschiri, et al., J.Am. Ceram. Soc. 75, 1019 (1992)

~ 10 s

Synthesis with plug-flow reactor

Plug-flow reactor

Size of products

Mixing of supercritical water and reactants affects the products

Experimental approaches

Model fluid

View cell

Cascade down

Buoyancy force

T.Aizawa, et al., J. Supercrit. Fluids **43**, 222 (2007).

Blood, et al., Chem. Eng. Sci. 59, 2853 (2004).

Mixing of two water streams

Difference in water density can be visualized.

Experimental setup

@ B4 port of Kyoto University Research Reactor Institute

S. Takami et al., J. Supercrit. Fluids 63, 46 (2012).

Kyoto University Research Reactor Institute

I/I₀ images

Averaged water density

Comparison between mixing modes

50 ms

Flow velocity after mixing = 119 mm/s

Nanoparticles were produced using these mixer.

Simulation by Prof.Tsukada

K. Sugioka, et al., J. Supercrit. Fluids 109, 43 (2016).

Unsteady-state vortex flow

Further questions

Density (temperature at constant pressure) was visualized by radiography.

However, temperature is affected by heat transfer from tube wall, in addition to mixing.

Questions

- Distribution of reactant solution (flow from side)
- Chemical reaction of metal ion
- Nucleation and growth of particles

Visualization of reactant solution

Mixing of Gd³⁺ solution with heated water

Experimental setup

@ B4 port of Kyoto University Research Reactor Institute

Experimental condition

Tube diameter	<mark>Qsc</mark> (g/min)	Q _{RT} (g/min)	T _{sc} (°C)	T _{mix} (°C)	C _{Gd} ³⁺ (mol/L)	
I/4 in. (4.8 mm)	16	8	23	23	0.1,0.2	
			219	113	0.1	5 MW
			285	181	0.1	
			388	331	0.025	IMW
I/8 in. (2.3 mm)	20	4	384	279	0.1	IMW

60 s for I image (I MW)30 s for I image (5 MW)5 images for I condition

Mixing at room temp.

Absorption by solution

Absorption by solute

5 mm

Distribution of metal ion solution was visualized.

Mixing at ~113°C

Mixing with water

Mixing with Gd³⁺ solution

15 s for 1 image40 images

Mixing at ~113°C

Mixing with water

Mixing with Gd³⁺ solution

Deposition of $Gd(OH)_3$ on the inner wall of tube occurred.

Other conditions

H₂O, 20 g/min, H_2O , 16 g/min, ~384°C ~388°C 0.1 M Gd³⁺, 0.025 MGd³⁺, 4 g/min, ~24°C 8 g/min, ~26°C 1/8 in. tube 1/4 in. tube 60 s for 1 image 60 s for 1 image 10 images 40 images

Plugging occurred in both cases.

Product from Gd(CH₃COO)₃

 $Gd(OH)_3$ was produced by hydrothermal reaction.

Summary

Neutron radiography was performed to visualize the mixing of reactant solution with water in plug-flow reactor.

- Distribution of reactant solution around mixing point was visualized using Gd(CH₃COO)₃.
- Gd(OH)₃ was produced during imaging.
- Deposition of Gd(OH)₃ on the inner wall of reactor occurred at high temperature.

To visualize the distribution of reactant solution, we will try

- Diluted Gd³⁺ solution / Inactive Gd species
- Synthesis of Gd-containing compound nanoparticles
- Use of Gd₂O₃ nanoparticles as a tracer
- Use of B³⁺ or other metal ions in heavy water