

2021年1月6日 中性子イメージング専門研究会

非均一加熱下の マイクロチャネル熱交換器内伝熱流動特性

 ○ 阪井 広幸 船倉 陸 梅川 尚嗣 教授(関西大) 網 健行 准教授 齊藤 泰司 教授(KUR) 伊藤 大介 助教 大平 直也 助教

研究背景

『マイクロチャネル熱交換器』

複数のマイクロチャネル(微細流路)を内部に有する プレートをフィンとし使用

マイクロチャネル熱交換器 (出典:ダイキンエ業ホームページ)

研究背景

『マイクロチャネル熱交換器』 複数のマイクロチャネル(微細流路)を内部に有する プレートをフィンとし使用

u = 0.5 m/s

実験装置概要

物性值表

		T _{sat} [deg.C]	P _{sat} [MPa]	$ ho_L / ho_G$ [kg/m ³]	μ _L [μPa·s]	μ _G [μΡa·s]	<i>H_{lg}</i> [kJ/kg]	σ [mN/m]	λ_L [mW/m-K]	μ_m [cm ² /g]
R32	CH_2F_2	20.0	1.475	24.0	120.3	12.5	280.8	7.86	129.7	1.025
Water	H ₂ O	100	0.1	1623	282.8	12.2	2257	58.9	678.9	2.679
Methanol	СНзОН	64.5	0.1	621.0	327.4	10.81	1101.7	18.9	190.1	3.025

1-1 可視化精度の評価(非平行性,中性子線のバラつきについて)

1-2 可視化検討結果

- 2. 圧力損失特性
- 3. 伝熱特性

1-1 可視化精度の評価(非平行性,中性子線のバラつきについて)

1-2 可視化検討結果

2. 圧力損失特性

<u>1-1 可視化精度の評価「非平行性」</u>

5MW 5s L 2500mm 105mmF1.8 Kobe Univ. Camera

 $L_{o-c} = 5 mm$

 $L_{o-c} = 55 \ \overline{mm}$

 $L_{o-c} = 305 \ mm$

- <u>1-1 可視化精度の評価「非平行性」</u>
 - < 可視化により得られる画像 >

矩形信号の取得は望めない

1-1 可視化精度の評価「中性子線のバラつき」

液単相時における真値(α=0)とのズレを

移動平均枚数	frame rate	α_ave	分散	標準偏差
-	fps	-	-	%
1	400	-0.05	0.525	72.5
5	80.0	-0.01	0.110	33.2
11	36.4	0.00	0.0491	22.2
25	16.0	0.00	0.0229	15.1
51	7.80	0.00	0.0103	10.2
81	4.94	0.00	0.00625	7.91

出力1 MWの場合,

Frame rate 7.8 fps以下で 標準偏差 σ<0.1となる.

時間分解能: 7.8fps以下(1MW時)

5 MWではどうなるのか?

<u>1-1 可視化精度の評価「中性子線のバラつき」</u>

10% phosphor decay Rough Estimation of Beam Expand and Flux of B4 port in KUR 10~1000µs (100,000~1,000 frame) Horizontal a.10mm (16.38mm) a.40mm (1566mm) 4700mm 1000mm $[0.12n/(100\mu m)^2(1/10000s)]$ $0.85n/(100\mu m)^2(1/10000s)$ Vertical $0.5n/(100\mu m)^2(1/10000s)$ a.75mm (85.64mm) a.125mm (7050mm) (750 mm^2) $(1402 mm^2)$ (5000 mm^2) $(4.5 \times 10^7 \,\text{n/cm}^2\text{s})$ $(1.25 \times 10^7 \,\mathrm{n/cm^2 s})$ $8.5 \times 10^7 \,\mathrm{n/cm^2 s}$ $5.0 \times 10^7 \,\mathrm{n/cm^2s}$ **Beam Exit**

▶ 中性子束を用いた可視化条件の検討

1-1 可視化精度の評価「中性子線のバラつき」

時間分解能:

1 MW運転時, 定量性を保証できるframe rateは7.8 fps.

▶5MW時では, 39.2 fps.

1-1 可視化精度の評価(非平行性、中性子線のバラつきについて)

1-2 可視化検討結果

2. 圧力損失特性

<u>1-2 可視化検討結果</u>

- 250fps (1/400s expo.)
- ・出力 1MW
- $L_{p-o} = 1330 \text{ mm}$
- $L_{o-c} = 30 \text{ mm}$
- 0.2 mm/pixel

 $q_H/q_L=1$

200

X [pixel]

 $x_{ex,ave} = 0.065$ $x_{ex,ave} = 0.118$

300

Y=700 pixel 地点 q比=1/1

100

 $\frac{1}{8}$ 0.5

0

 q_H

 q_L

1-2 可視化検討結果

- ・出力 1MW
- $L_{p-o} = 1330 \text{ mm}$
- $L_{o-c} = 30 \text{ mm}$
- 0.2 mm/pixel

 $q_H/q_L = 1$

 q_H

 q_L

 q_L

 q_H

1-2 可視化検討結果

定点の時間方向におけるボイド率変動

1-2 可視化検討結果

<実験条件> $G=150 \text{ kg/m}^2\text{s}$, $x_{eq}=0.118$

15/25

<u>1-2 可視化検討結果</u> 定点の時間方向におけるボイド率変動

 $q_H/q_L=2$

- ・時間平均ボイド率より,流動変動状態の把握
- ・時間変動値解析より、流動脈動状態の把握

1-1 可視化精度の評価(非平行性,中性子線のバラつきについて)

1-2 可視化検討結果

2. 圧力損失特性

2. 圧力損失特性

計算モデル図

1-1 可視化精度の評価(非平行性,中性子線のバラつきについて)

1-2 可視化検討結果

2. 圧力損失特性

まとめ

計算と実験結果について引き続き検討

可視化結果について

- 可視化精度について
 可視化範囲: H×W = 80-90 × 20 mm
 空間分解能: 0.2 mm/pixel
 時間分解能: 7.8 fps
- 動画撮影を通じて、流動変動・流動脈動現象の違いやその特徴を明らかにした。

伝熱結果について

- ・2本管モデルを通じて、ヘッダ間圧力変動を定性的に表現することができた。
- この計算結果と実験結果のボイド率分布を比較したが、
 定量性の確保が今後の課題。