https://www.rri.kyoto-u.ac.jp/events/13828 2021.01.06 令和 2 年度 中性子イメージング専門研究会

# 機械学習を用いた エマルション検出器中の飛跡認識



吉田純也<sup>a,b</sup>, Abdul Muneem<sup>a,c</sup>, 梅本篤宏<sup>d</sup>, 江川弘行<sup>a</sup>, 笠置歩<sup>a,e</sup>, 齋藤武彦<sup>a,f,g</sup>, 齋藤奈美<sup>a</sup>, 瀧雅人<sup>h</sup>, 中川真菜美<sup>a</sup>, 長縄直崇<sup>d</sup>, 日野正裕<sup>i</sup>, 広田克也<sup>d</sup>, 武藤直人<sup>d</sup>

- <sup>a</sup> High Energy Nuclear Physics Laboratory, RIKEN
- <sup>b</sup> Department of Physics, Tohoku University
- <sup>c</sup> Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Pakistan
- <sup>d</sup> Department of Physics, Nagoya University
- <sup>e</sup> Graduate School of Engineering, Gifu University
- <sup>f</sup> GSI Helmholtz Centre for Heavy Ion Research, Germany
- <sup>g</sup> School of Nuclear Science and Technology, Lanzhou University, China
- <sup>h</sup> Graduate School of Artificial Intelligence and Science, Rikkyo University
- <sup>i</sup> Institute for Integrated Radiation and Nuclear Science, Kyoto University

理研グループの開発: 微粒子エマルションNIT(Nano Imaging Tracker)の、 中性子イメージングに向けた飛跡検出



Input: 顕微鏡断層画像のセット

Output: 個々の飛跡の付け根の位置座標

当面の目標: (100μm)<sup>2</sup> あたり10<sup>4</sup>本の本数密度(統計誤差1%)での飛跡認識

KUR CN-3にて、画像処理開発に用いるサンプルを作成した。



## 飛跡本数密度と見え方の予想

 $[tracks / (100 \mu m)^2]$ 



#### 目標とする飛跡密度

### KUR CN-3での実験

**2020**年10月:照射時間と飛跡本数密度の対応を測定。 ~10<sup>2</sup> tracks, ~10<sup>3</sup> tracks / (100μm)<sup>2</sup>のサンプルを作成。

**2020年12月:1\*10<sup>4</sup> tracks / (100µm)<sup>2</sup>のサンプルを作成。** 

### エマルション検出器



### 照射時間と飛跡本数



2020年10月の照射サンプルを 現像後に目視で実測:

| 照射時間     | tracks / (100µm) <sup>2</sup> |
|----------|-------------------------------|
| 1000 sec | 390 +- 16                     |

10<sup>6</sup> n/cm<sup>2</sup>/s @ 1MWを仮定 <sup>10</sup>B膜の検出効率: 390 / (10<sup>6</sup> n/cm<sup>2</sup>/s \* 1000 s \* 10<sup>-4</sup>cm<sup>2</sup>) ~= 0.4%

2020年12月の照射実験

| 照射時間      | tracks / (100µm) <sup>2</sup>    |
|-----------|----------------------------------|
| 10000 sec | (3.90 +- 0.16) * 10 <sup>3</sup> |
| 25000 sec | (0.98 +- 0.04) * 10 <sup>4</sup> |
| 26250 sec | 个 x 1.05                         |

画像の比較

 $[tracks / (100 \mu m)^2]$ 



~4\*10<sup>2</sup> tracks / (100µm)<sup>2</sup>

 $^{4*10^{3}}$  tracks / (100 $\mu$ m)<sup>2</sup>

### 機械学習による飛跡検出

[tracks / (100µm)<sup>2</sup>]



- 密集した飛跡の認識。
- 様々な画質、飛跡本数密度を包括する手法を目指す。

# 機械学習 (Mask R-CNN\*) を用いた物体検出



https://github.com/matterport/Mask\_RCNN

#### 例)

歩行者データセット" Pennsylvania-Fudan dataset "



\*) Region Based Convolutional Neural Networks



- ・画像中から目的の物体を検出
- ・カテゴリ分類のスコア
- ・混み合った部分からの検出
- ・原子核物理の実験に活用中 J. Yoshida et al., N.I.M-A, 989 (2021) 164930

#### 教師データ

- 画像とマスクのペア
- 大量に必要(10<sup>4</sup>枚以上)

→シミュレーションを活用し、 入力画像-マスク対を大量に生成

### ロードマップ

 Step1.
 機械学習を用いて飛跡検出が可能か?

 飛跡密度 < 10<sup>2</sup> tracks / (100µm)<sup>2</sup>

 シミュレーション画像で学習、実際の画像で認識

 Step 2.
 飛跡の根本検出は可能か?

 飛跡密度~10<sup>3</sup> tracks / (100µm)<sup>2</sup>

 シミュレーション画像で学習、シミュレーション画像で認識

 Step 3.
 実際の高密度飛跡画像でどこまで検出可能か?

 飛跡密度 10<sup>3</sup>~10<sup>4</sup> tracks / (100µm)<sup>2</sup>

 シミュレーション画像で学習、実際の画像で認識

Step 1: 原理実証

シミュレーション(教師画像)



目視結果と比較:検出効率 98.5%, ノイズ誤検出 2.4% シミュレーション+機械学習の原理を実証。→ Step2へ。

### Step 2:高密度飛跡の根本認識のために

1. 根本の位置のみに丸印、マスクの面積を小さく。





### 2. 異なる深さの画像を色で区別。





RGBチャンネルに割り当てて合成

画像シミュレータの現状

Simulated image



### Real image



二値化画像

Step 2: 飛跡の根本検出

シミュレーション画像(教師画像)



- 2\*10<sup>3</sup> tracks / (100µm)<sup>2</sup> 相当
- 画像1000組で学習
- 256 pixels \* 256 pixels = (14.1μm)<sup>2</sup>

おおむねー致。 検出効率、S/N比の定量評価中。 Step2の開発を進行中。

13

シミュレーション画像(検証用)

### まとめ

- 微粒子エマルション検出器の中性子イメージングへの応用
- 当面の目標:飛跡本数密度 10<sup>4</sup> tracks / (100μm)<sup>2</sup> で飛跡認識
- KURでの照射実験で、~4\*10<sup>2</sup>,~4\*10<sup>3</sup>,~1\*10<sup>4</sup> tracks / (100μm)<sup>2</sup> のサンプルを作成した。
- 機械学習を用いた飛跡認識を開発中。
   教師画像はシミュレーションを活用。
   飛跡本数密度は数千tracks / (100μm)<sup>2</sup>までは適応可能か。

## 今後

- 10<sup>4</sup> tracks / (100µm)<sup>2</sup> のサンプルの撮像 @ 名古屋大顕微鏡
- 画像シミュレータを改良し、実データでの飛跡認識に適応
- 飛跡認識率の飛跡密度依存性を評価