X線ラジオグラフィによる水平バンドル内 気液二相流のボイド率分布計測

〇馬場 実咲¹, 村川 英樹¹, 杉本 勝美¹, 竹中 信幸¹, 齋藤 泰司², 伊藤 大介²

¹神戸大学大学院工学研究科 ²京都大学原子炉実験所

シェルアンドチューブ型熱交換器:

プロセス工業,化学工業,原子力発電所などで一般的に 利用されている

多管式熱交換器の最適設計

- 管周りのボイド率と流動様式の関係
- 管の伝熱特性

目的

Dowlati, R et al., *AIChE Journal*, Vol.36, No.5 (1990), pp.765-772.

D.A., McNeil et al ., *International Journal of Multiphase Flow,* Vol.45, (2012), pp.53-69.

本研究の目的:

水平バンドル内気液二相流の管周りポイド率分布が流動様式 に与える影響を評価する

ボイド率の算出

輝度分布
$$S(x,y)$$
:
 $\alpha = 1$ $S_g(x,y) = G(x,y) \exp[-\rho_w \mu_{mw} t_w(x,y)] + O_g(x,y)$ G : Gain
 O : Offset
 $\alpha = 0$ $S_l(x,y) = G(x,y) \exp[-\rho_w \mu_{mw} t_w(x,y) - \rho_l \mu_{ml} t(x,y)] + O_l(x,y)$
二相流 $S_{TP}(x,y) = G(x,y) \exp[-\rho_w \mu_{mw} t_w(x,y) - \{1 - \alpha(x,y)\}\rho_l \mu_{ml} t(x,y)] + O_{TP}(x,y)$

Void fraction
$$\alpha(x, y) = \ln \left\{ \frac{S_{TP}(x, y) - O_{TP}(x, y)}{S_l(x, y) - O_l(x, y)} \right\} / \ln \left\{ \frac{S_g(x, y) - O_g(x, y)}{S_l(x, y) - O_l(x, y)} \right\}$$

	Brightness [-]
α = 1	105
α = 0	11

※1/30 [s]あたりの輝度

オフセット領域

X線の減衰

$$I = I_0 \exp(-\rho \mu_m t)$$

I:透過したX線の強度 *I*₀:入射したX線の強度 ρ :密度 μ_m :質量減衰係数 t:厚み

管群撮影時のα=0,α=1の状態から 質量減衰係数を算出

 $\mu_m = 0.25 \,[\text{cm}^2/\text{g}]$

ボイド率分布動画

12

結果の整理

(1) Chisholm, D., Gerge Godwin, London and New York, 1983

X線ラジオグラフィを用いて,水平バンドル内気液二相流の ボイド率分布計測を行った.

- ✓中性子 I. I. および高速度カメラを用いて, 90×90 mm² の矩形流路内のボイド率分布を計測できることを確認. ボイド率は±5%以内の誤差で評価できる.
- ✓各流動様式に対する管群内部のボイド率分布が得られた。