

京都大学原子炉実験所「中性子イメージング専門研究会」 2016年1月7日

産業用CMOSカメラを用いた パルス中性子イメージングによる 元素識別型CT

日本原子力研究開発機構 瀬川麻里子,大井元貴,甲斐哲也, 篠原武尚,呉田昌俊,坂本健,伊巻正

- 1) 現在までの取り組み
- 2) 動機
- 3) 実験システム
- 4) 実験結果
 - ・エネルギー依存性を利用した3次元画像
- 5) まとめ

中性子可視化・計測技術開発の流れ

動機

パルス中性子を用いたエネルギー識別型3次元可視化技術開発 →観測対象が持つ物理量の定量化とその実空間分布の取得・画像化 → 材料工学、原子力工学、などに展開する。

高感度・高速度カメラを用いた撮像システムの開発が不可欠

アプローチ

- 1) 定量性の評価
- 2) 大容量データ(e.g.:15GByte/1run)
- 3) 一度に撮像可能なデータの制限
- 4) 高速撮像時の低解像度
- 1. <u>中性子エネルギー依存性を利用した可視化</u>
- 2. 実用的な測定システムの構築→ 測定の効率化
 - ・<u>制御・撮像の自動化</u>
 - •<u>高感度化</u>
 - ・<u>大容量データの高速転送</u>

開発

<u>M. Segawa et al.</u>, Nuclear Instr. and Method. A, 769, 97 (2015)

M. Segawa et al., Nuclear Instr. and Method. A, 697, 77 (2013)

<u>M. Segawa</u> et al., NSS/MIC, IEEE Conference Record (2011)

M. Ooi et al., Physics Procedia, 43, 337 (2013)

T. Kai et al., Nuclear Instr. and Method. A, 651, 126(2013)

元素識別型3次元イメージング技術の開発

2次元での空間解像度の評価

PSIインジケーター(Gd製) 中性子透過率画像

実験結果

NeutrOn Beam-line for Observation and Research Use (NOBORU)

A primal mission of NOBORU is to study neutronic NOBORU is also expected as a performance of JSNS. The experiments aim at test port to accommodate R&D contribution for stable operation, design activities and trial users to validation and integrity check of JSNS. bring out new research activities. Contact person: F. Maekawa (maekawa.fujio@jaea.go.jp) JSNS K. Oikawa (oikawa.kenichi@jaea.go.jp) Hatch 1 m x 1 m Beam Stop Bandwidth Chopper 0.2 ton Pre-Shield cimental Table Entrance & Corridor 1,2 BL 10

Beamfine Number : BL 10 (decoupled moderator) L 1 (moderator:sample distance) : 14.0 m Maximum Beam Size : 100 mm x 100 mm Experimental Cave : 2.5 m(W) × 3.5 m(L) x 3.0 m(H) Cold Neutron Flux at Sample Position : 4.8 x 10⁷ [n/s.cm²] Neutron Peak Intensity at 10 meV : 1.5 x 10¹² [n/eV.s.cm²] Neutron Pulse Width at 10 meV : 33 [μ s] Available Bandwidth : 9 Å (possible to shift)

ビームパワー: 200**kW(~2012)** ビームサイズ : ロ100x100 mm 加速周期 : 25 Hz (D*T*=40 ms)

共鳴領域3次元イメージング

条件

- 125k frame/s <u>⊿</u>*T*= 8µs
- •2300×1700 pixel,
- ・5度刻み、36ステップ撮像、400枚積算
 ・En= 4.7-5.1 eV(Au共鳴領域)
 En=4.2-3.9 eV (Ta共鳴領域)
- En=1.25-1.35eV (In共鳴領域)

En=5-10meV

MLEM法による3次元再構成結果

共鳴領域のCT化に成功

再構成法による画像の比較

再構成法による3次元での空間分解能

まとめ

- J-PARCパルス中性子と高感度化した産業用カメラ 等を使用し、有効なビームタイム内でエネルギー識 別型CTが取得可能な撮像システムを構築した。
- FBP法、MLEM法を用いてエネルギー毎にCT再構 成を行い、CT値の中性子エネルギー依存性を利 用して物質ごとの3次元可視化が可能なことを示し た。
- MLEM法による3次元空間分解能1mmを確認
 →実験条件によってはFBP法でも 分解能の向上が可能であることを示した。