J-PARC RADEN における パルス中性子位相イメージングの開発

JAEA 関義親

Talbot-Lau 干渉計の原理

Fresnel回折場→ G2位置にG1直後と同じ強度分布: 自己像 試料による自己像の歪みをG2とのモアレ稿で検出

- 吸収コントラスト像(吸収断面積)
- 微分位相コントラスト像(散乱長)
- ビジビリティコントラスト像(小角散乱)

測定される物理量

微分位相イメージング

Phase of moiré fringe

$$\varphi(x,y) \propto \lambda^2 \frac{\partial}{\partial x} \int b(x,y) \rho(x,y) dz$$

ビジビリティイメージング

Damping factor of visibility

$$\eta \simeq \exp[-\sigma_{\Phi}^2(x, y)\{1 - \gamma(x, y; -pd_1)\}]$$

Autocorrelation function

$$\gamma(x, y; \Delta x) \simeq \exp\left[-\left\{\frac{|\Delta x|}{\xi(x, y)}\right\}^{2H}\right]$$

b: Scattering length, ρ : Atomic density, σ_{Φ}^2 : Standard deviation of phase, ξ : Correlation length, H: Hurst parameter

Neutron beam

J-PARC RADEN におけるTalbot-Lau 干渉法の高度化

 パルスビームでのTOF測定による 波長分解型Talbot-Lau干渉法

> 広波長域利用・高波長分解能の両立 → 高精度位相測定 波長依存性を活かした解析

 偏極中性子利用による 磁気有感型Talbot-Lau干渉法 磁場勾配測定 磁場構造

格子のアラインメント条件

d₀, d₁, d₂: Grating pitches R₁: Distance G0-G1 Z₁₂: Distance G1-G2 λ : Wavelength p: Talbot order

 Talbot condition: Put G2 on the self-image position.

$$z_{12} = p \frac{{d_1}^2}{\lambda} M$$

 $p = 1 \quad (G1: Absorption grating)$ 1/2 \quad (G1: \pi/2 phase grating) 1/8 \quad (G1: \pi phase grating)

• Lau condition:

Superpose self-images from each line source of G0 constructively.

$$\frac{d_0}{d_2} = \frac{R_1}{Z_{12}}$$

• Magnification due to spherical wave propagation

$$d_2 = d_1 M$$

$$M := \frac{R_1 + z_{12}}{R_1}$$

低ビームコヒーレンス下でのモアレ縞

Visibility of moving fringe dependent on λ (z₁₂: fixed)

$$z_{12} = p \frac{{d_1}^2}{\lambda}$$

 $z_{12}\lambda \propto p$

Moiré fringes are observable around $\lambda = 0.5 \times d_{12}/z_{12}$ (p = 1/2).

 $\Delta\lambda/\lambda \sim 50\%$

Advantages of wavelength-resolved TL interferometry

- Wide wavelength band with fine wavelength resolution
 - Wide band → High statistics
 - Fine resolution \rightarrow avoid chromatic aberration \rightarrow High visibility

 \rightarrow Increase phase precision and accuracy

- Wavelength dependence of physical quantity
 - Differential phase contrast imaging $\propto \lambda^2$
 - Visibility contrast imaging Autocorrelation function with different scales

Experiment at RADEN in J-PARC

Fabrication of absorption grating with fine pitch (G2)

Gd evaporation method

Neutron transmission image

Wavelength dependence of neutron transmission

Effective Gd thickness $9.0 \ \mu m$ Duty cycle 0.36

On the assumption of ideal shape of Ronchi grating

Fabrication of Absorption Grating

Gd based metallic glass imprinting W. Yashiro et al., APEX, 7 (2014) 032501. W. Yashiro et al., JJAP, 55 (2016) 048003.

-P/IRC

Observation of moiré fringe (without sample)

Fringe pattern can be seen over full wavelength range.

Wavelength dependence of moiré fringe (projected)

Phase imaging with TOF method

Wide wavelength band vs narrow wavelength band

 $\Delta\lambda/\lambda = 2\%$ Stat. error 3×10^{-2} rad

Wide wavelength band + TOF

- Pulsed Talbot-Lau interferometry with TOF method at RADN, J-PARC.
- Differential phase contrast imaging with wide wavelength band (50%) and fine wavelength resolution (~ 3%).
- Phase analysis method with λ^2 dependence increases the dynamic range of phase detection in TL interferometer.
- Fabrication of absorption grating with Gd evaporation and imprinting of metallic glass
- Polarized TL interferometry