

エネルギー機器の可視化

神戸大学大学院 工学研究科 機械工学専攻 浅野 等, 村川 英樹, 杉本 勝美, 竹中 信幸 西崎 柾峻, 馬場 美咲, 宮崎 猛, 弘中 茂夫 (卒業生)村田 健太, 中村 俊裕, 澤田 将貴, 古野 正晃, 北村 信樹

Multi-Phase Thermo-Fluid Dynamics Laboratory Department of Mechanical Engineering, Kobe University

中性子ラジオグラフィ

実機と同じ素材,同じ構造内の作動流体の機器動作時の状態を 可視化・計測できる唯一の技術

X線ラジオグラフィ

金属容器の可視化は困難 比較的大きな系での低ボイド率気液二相流の可視化

これまでの可視化計測事例

□ 原子力

- ▶ ロッドバンドル内気液二相流 ーボイド率分布, CT計測
 □ 内燃機関(ディーゼルエンジン)
 - ▶ 内部機構およびオイルポンプの可視化 ーオイルの流動挙動
 - ▶ 燃料噴霧ノズル ーノズル内キャビテーション
- □ 固体高分子形燃料電池(PEFC)
 - ▶ JARIセル(単セル, 3セルスタック)の可視化 一液水分布
 - ▶ 膜厚方向分布の可視化 一高空間分解能での液水分布計測
- ロ冷凍・ヒートポンプサイクル内冷媒流れ
 - ▶ コンプレッサー,アキュムレータ 起動時の液冷媒およびオイル挙動
 - ▶ キャピラリーチューブ ーボイド率分布, 沸騰開始点
 - ▶ 冷媒分流器 一内部の流動構造,ボイド率分布
- □ 電子機器冷却システム
 - ▶ ヒートパイプ 一起動特性と動作原理,不具合事象の解明
 - ▶ 宇宙機器用コールドプレート 一動作特性, 不具合事象の解明
 - ▶ スパイラルチューブ 内部の流動構造, ボイド率分布
- □ 熱交換器内熱流動特性
 - ▶ プレート熱交換器 ーボイド率分布,冷媒偏流
 - ▶ ワイヤーコイルを有する伝熱促進管内気液二相流 ーボイド率分布, CT計測

□吸着式冷凍機

▶ シリカゲル吸着器 ーシリカゲル粒子層内湿分分布, 粒子層バインダーの影響

燃料電池での水分管理

固体高分子膜はH⁺ 輸送のため湿らせておく必要があるため, カソードには酸化剤として湿り空気が供給される.

カソードでは電池反応でH2Oが生成されるため過飽和となり、結露する.

→ 発電時の液水分布の過渡変化の同時計測

Micro Porous Layer (MPL) の利用

電極近傍での液水の生成・滞留を防ぐことを目的とする.

燃料電池の評価項目

中性子ラジオグラフィシステム

液水の二次元分布(発電特性との比較)

液水の二次元分布(発電特性との比較)

9

液水の二次元分布(発電特性との比較)

Without MPL

With MPL

液水の水平方向分布(流路部)

液水の水平方向分布(リブ部)

熱伝達特性, 圧力損失特性

冷媒が気液二相流として流動する場合には, その界面構造が熱流動特性に強く影響を及ぼす.

ボイド率 = 蒸気の体積割合

) 質量流束,乾き度(蒸気の質量割合)が既知であれば, 各相の平均流速を計算できる。

▶ 沸騰開始点の計測

▶ ドライアウトの計測

ロシェル・チューブ熱交換器

□ 積層型熱交換器

(プレート型, プレートフィン型, マイクロチャネル熱交換器)

ケトル型リボイラ

<u>シェル-チューブ式熱交換器</u>

✓ 化学プラントや地熱バイナリ発電の蒸発器として利用
 ✓ 胴側一水平管群内プール沸騰

管群内ボイド率

- ▶ 気泡撹拌による伝熱促進
- ▶ 循環流の強度

⇒

<br /

研究目的

15

従来の研究

□ 空間平均ボイド率計測

中平均熱伝達率計測

<u>局所の評価結果が少ない</u>

研究目的

伝熱管周りのボイド率分布と熱伝達率分布の相関評価

> 気泡撹拌による伝熱促進 ⇒

研究対象

水平管群試験部(奥行き90mm) 空気-水二相流 低ボイド率(気泡流,間欠流)

X線ラジオグラフィによる 可視化・計測

X線ラジオグラフィによるボイド率計測

水平管群実験装置

高速度カメラによる撮影画像

管周り熱伝達率分布

21

管周り熱伝達率分布

新しいX線源でのダイナミックレンジ

	Elomo roto	Applied condition		Brightness		Dunomio
	[fps]	Voltage [kV]	Current [mA]	Empty	Full	range
新X線源 +	30	100	3.5	634	145	490
X線I.I. (4 inch)	60	100	3.5	298	50	248
旧X線源 + X線I.I. (4 inch)	30	80	5	525	103	422
旧X線源 + 中性子I.I. (9 inch)	30	80	5	307	43	265

排熱駆動の冷凍サイクル

 \Box

吸着率

吸着時に発生する吸着熱によって <u>吸着量の低下</u>

吸着時における 吸着材層の<u>熱拡散が課題</u>

吸着率 = <u>吸着量</u> 吸着率 気術の質量

相対圧力 = <u>吸着材まわりの圧力</u> 吸着材温度に対する冷媒の飽和圧力

フィンを設置することで、吸着材層の熱拡散向上

▶ バッチ運転時に,吸着材+フィンの熱容量がロス

<u>過渡変化時の吸着量分布を評価したフィン配置の設計</u>が必要 → 中性子ラジオグラフィで可視化・計測

中性子ラジオグラフィ

<u>物質を構成する元素の中性子線の透過率の差異</u>を利用した可視化・計測手法

画像処理による吸着量の計測

吸着時の可視化画像の輝度

$$S = GI_0 \exp(-\rho_w \mu_{m,w} t_w - \rho_{ads} \mu_{m,ads} t_{ads} - \rho_r \mu_{m,r} t_r) + O$$

容器 吸着材(活性炭) 冷媒(エタノール)
乾燥時の可視化画像の輝度
$$S_{dry} = GI_0 \exp(-\rho_w \mu_{m,w} t_w - \rho_{ads} \mu_{m,ads} t_{ads}) + O_{dry}$$

容器 吸着材(活性炭)
S:輝度, G:撮像装置のゲイン, O:オフセット
w:容器, ads:吸着材(活性炭), r:冷媒(エタノール), dry:乾燥状態

吸着時の可視化画像の輝度

$$S = GI_0 \exp\left(\frac{-\rho_w \mu_{m,w} t_w}{P} - \frac{\rho_{ads} \mu_{m,ads} t_{ads}}{P_r \mu_{m,r} t_r}\right) + O$$

容器 吸着材(活性炭) 冷媒(エタノール)
乾燥時の可視化画像の輝度

$$S_{dry} = GI_0 \exp\left(\frac{-\rho_w \mu_{m,w} t_w}{P} - \frac{\rho_{ads} \mu_{m,ads} t_{ads}}{P_r t_r(x, y)}\right) + O_{dry}$$

S:輝度, G:撮像装置のゲイン, O:オフセット
w:容器, ads:吸着材(活性炭), r:冷媒(エタノール), dry:乾燥状態
国像処理で得られる吸着量

$$\rho_r t_r(x, y) = \frac{1}{\mu_{m,r}} \cdot \ln\left[\frac{S_{dry}(x, y) - O_{dry}(x, y)}{S(x, y) - O(x, y)}\right]$$

$$pter Pwquk$$

吸着材層ステップ

目的 : 可視化画像による平衡吸着量の計測結果の検証 (従来の研究での計測値との比較)

物性值

比表面積	3170 m²/g		
平均粒子径	86 µm		

真影法による計測結果

過去の文献値との比較による計測結果の検証

XI.I. EI-Sharkawy et al., Experimental investigation on activated carbon-ethanol pair for solar powered adsorption cooling applications, International Journal of Refrigeration, 31(8), pp.1407-1413 (2008)

試験部

試験部材質:純アルミ 試験部厚さ:20 mm

吸着量の時間変化

脱着量の時間変化

まとめ

中性子ラジオグラフィ

実機と同じ素材,同じ構造内の作動流体の機器動作時の状態を 可視化・計測できる唯一の技術

