中性子を用いた量子渦可視化の試み

辻 義之 名古屋大学工学研究科

松下 琢, 國立 将真^A, 久保 涉^A, 鈴木 颯^A, Volker Sonnenschein^A, 篠原 武尚^B, 林田 洋寿^C, Wei Guo^E, 富田 英生^A, 井口 哲夫^A, 和田 信雄, 広田 克也, 北口 雅暁, 鬼柳 善明^A, 清水 裕彦, 伊藤 大介^F, 齊藤 泰司^F 名大理, 名大工^A, J-PARCセ^B, CROSS^C, 米国高磁場研^E, 京大炉^F

乱流中の渦

竜巻

ペットボトルの中の渦

http://www.asahi.com/topics/word/%E7%AB%9C%E5%B7%BB.html http://www.ny.airnet.ne.jp/satoh/expmkidsM0.htm

複雑な流動場

オリフィス下流の渦構造 速度勾配テンソルの第二不変量(Q値)による渦の可視化

Q値の等値面 Q=6x10⁵ s⁻²

(x50 slow motion)

- オリフィスエッジからの流れの剥離によって渦が発生
- x/D=1の周辺で間欠的に渦が壁面方向に拡散

どうして₄Heをつかうのか?

大気圧下での沸点は4.2K、液体ヘリウムは極低温下でのみ存在する

PIV (Particle image velocimetory)

Instantaneous velocity fluctuations are measured.1-Camera: 2-component velocity in 2-dimensional2-Camera: 3-component velocity in 3-dimensional

Particle size, particle density, space & time resolution of camera, *statistical quantities are OK_D

Experimental Set-up

①Injection in He I

量子渦

- ・超流動流体中に存在する位相欠陥
- ・循環が<u>量子化</u>された渦
 循環……渦芯を囲む閉曲線Cに沿って
 速度場v(r)の周回積分をとった量

$$\Gamma = \oint_C v_s(r) \cdot dr = \frac{\hbar}{m} \oint_C \nabla \theta \cdot dr = \frac{h}{m} n$$

- ・粘性による減衰、消滅がなく、安定して存在
- ・<u>同一の循環</u>

$$\mathbf{E} = \int \frac{1}{2} \rho_s v_s^2 \, d\mathbf{r} = \frac{\rho_s \Gamma^2}{4\pi} \ln\left(\frac{R}{a}\right)$$

E ∝ n²なので n=2,3…の渦は、n本のn=1の渦に分かれて、 格子構造をとる

微細粒子で可視化できる渦構造

量子化渦に追従するトレーサー粒子の 「運動方程式 (Chagovets) —	量子化渦近傍の圧力勾配 │
ma_{-z} = F_{stokes} - F_{trap}	$\nabla \mathbf{p} = \frac{\rho_{s}\kappa^{2}}{8\pi^{2}}\nabla \left(\frac{1}{\mathbf{r}^{2}}\right) = -\frac{\rho_{s}\kappa^{2}}{4\pi^{2}}\frac{1}{\mathbf{r}^{3}}$
m :トレーサー粒子質量 a _{-z} :z負方向加速度 F _{stokes} :ストークス抗力 F _{trap} :トラッピング力	 ρ_s: 超流動成分の密度 κ:循環量子 r : 渦芯からの距離

Thermal Energy System Engineering Lab Dept. of Energy Eng & Sc Graduate School of Nagoya Univ.

ヘリウム・エキシマ:なぜ中性子を利用するのか?

KUR- experiments

November 14-November 16, 2017

Nov.15 : 1MW operation Nov.16 : 5MW operation

Experimental setting

PMT

Experimental setting

Intensity [A.U.]

中性子照射のある場合とない場合の比較

脱励起レーザー(1085nm)のあるなしの比較

励起レーザー(905nm)のパワーを上げた場合

Intensity [A.U.]