研究用原子炉を用いた中性子 イメージングについて

~ 熱流動研究における熱中性子ラジオグラフィ ~

熱流動系研究者にとっての中性子ラジオグラフィ

竹中先生が言われるところの"機械のレントゲン"

金属に対して透明

水に対する減衰が大きい

容易に色付けが可能

X線との併用

但し, あくまでも影絵

Attenuation coefficient of thermal neutrons

流動層内の粗大粒子と層材挙動の可視化 層材:けい砂(硝酸カドミウム水溶液で着色) トレーサー:炭化ホウ素+粘土

X線による可視化

セグレーゲーションの可視化 層材: けい砂(400μ) けい砂(140μ) 硫酸ガドリニウムで着色

KURとJRR-3に対する認識

中性子束の差

視野の差

照射室環境の差

	Neutron flux [n/cm ² s]	N/γ ratio [n/cm ² mR]	L/D	Cd ratio	Visible area
Kyoto Univ. KUR(E-2)	4.8×10 ⁵	1.0×10 ⁶	100	400	ϕ 160
Kyoto Univ. KUR(B-4)	8.5×10^{7} (at exit) 5.0×10^{7} (at 1m)	N/A	N/A	N/A	10 × 80 (40 × 80 at 4.7m)
JAEA JRR-3(7R TNRF-2)	1.5×10 ⁸	6.3×10 ⁶	153(V) 176(H)	130	255×305

JRR-3 7R TNRF-2

流動層熱交換器(縦管)内の気泡挙動

Void Fraction Distribution by CT Reconstruction

KUR(B-4 ピット利用)

Void fraction (5mm)

(q:const.)

I.D.=5mm L=400mm

(q:const.)

 $p_s=0.3$ MPa G=600 kg/m²s $T_{in}=80$ deg.C

原子炉による中性子ラジオグラフィ

時間分解能 動的イメージ 空間分解能 ダイナミックレンジ 実験環境の自由度

Visualization by Neutron Radiography

By KURRI : 5 MW 30 fps

液体窒素クエンチ現象 (重力注水・水加熱)

強制注水系におけるクエンチ現象(200fps)

クエンチ現象の可視化(逆環状流状態の評価)