

エネルギー分析型イメージング装置 RADENの現状

甲斐 哲也¹, 篠原 武尚¹, 廣井 孝介¹, 蘇 玉華¹,瀬川 麻里子¹, 及川 健一¹, 林田 洋寿², J. D. Parker², 松本 吉弘²

> 1: 日本原子力研究開発機構, 2: 総合科学研究機構 (CROSS)

エネルギー分析型中性子イメージング装置「螺鈿」

J-PARC物質・生命科学実験施設BL22に世界で初めて 設置されたパルス中性子イメージング専用装置

2015年度よりユーザー利用開始

新手法の開発をリード

- 共鳴吸収イメージング
- ブラッグエッジイメージング 偏極中性子イメージング

高性能中性子ラジオグラフィ装置

- 高L/D (高解像度撮像が可能)
- 大面積(最大□30cm)
- 広い実験室空間

J-PARC MLF

平成29年度中性子イメージング専門研究会(2017/Dec/28-29)

実験室空間

- L =14.4~26.5m (12.1m)
- W =1.3m@L=14.4m 5.1m@L=25m
- H = 3.7m (BL: H=1.77m)

 ハッチ、クレーンによる 大型機器の搬入が可能

J-PARC MLF

1トン(下流)~600kg(上流)の
 試料を回転、移動可能

6

名称	位置	可動軸			最大	天板
		θ	X, Y, Z	Rx, Ry	荷重	直径
Large	L=23m	±173°	±300	-	1.0	700
			mm		ton	mm
Medium	L=18m	±173°	±100	+5°	600	300
			mm	±0	kg	mm
Small	Portable	±360°	-	±5°	10	150
					kg	mm

広い空間を活かした実験

鉄筋コンクリート試験装置(東京理科大・兼松さん)

J-PARC MLF

2軸引張試験機 (CROSS)

定常中性子源とパルス中性子源

RADENの課題状況 2015A to 2017B

平成29年度中性子イメージング専門研究会(2017/Dec/28-29)

減弱係数の比較(共鳴 vs 熱中性子)

共鳴中性子イメージングに必要な元素の量

Ele- ment	E _{reso} (eV)	σ _{reso} (kb)	T _{90%} (mg/cm²)	Ele- ment	E _{reso} (eV)	σ _{reso} (kb)	T _{90%} (mg/cm²)	
Na	2.9k	0.37	10.7	Cs	5.9	8.3	2.8	
Mn	341	3.2	3.0	Sm	0.09	17.1	1.5	
Со	132	10.4	1.0	Eu	0.46	11.5	2.3	
Cu	2.0k	0.34	32.9	Dy	5.4	13.0	2.2	
Zn	517	0.93	12.4	Tm	3.9	27.1	1.1	
As	47	2.5	5.2	Hf	7.8	29.8	1.0	
Мо	45	2.5	6.8	Re	2.2	9.2	3.5	
Rh	13	5.3	3.4	lr	0.65	5.2	6.5	
Ag	5.2	12.2	1.6	Та	4.3	11.5	2.7	
Cd	0.2	7.5	2.6	W	1.9	30.1	1.1	
In	1.5	29.1	0.7	Au	4.9	30.7	1.1	
※T90%: 透過率が90%となる厚さをイメージングに必要な最小量と定義								

装置整備の進捗

RADENでのCTの課題

時間平均強度の変動

- 加速器トリップ
- 一定割合で50GeV RCSに 振り分けられるビーム

CTシステムの変遷

J-PARC MLF

平成29年度中性子イメージング専門研究会(2017/Dec/28-29)

カラー|.|.型検出器+高速度カメラ

カラー||+光速度カメラの空間分解能

10kfps測定、5.5inch FoV, 960x960px, 光I.I. gain 790、10~30msの積分

試料なし(照射時間: 1.4h) X線調整時の痕跡が見える 規格化後

データ処理: 持木Gr

平成29年度中性子イメージング専門研究会(2017/Dec/28-29)

分解能確認用インジケータ

- H26年度にJ-PARCで製作(Gd 3µm) (アスク・サンシンエンジニアリング)
- H30年度、予備品として同仕様での 製作を計画中
- 他施設からの発注数をまとめて価格交渉

参考文献

M. Segawa, et al., "**Spatial resolution test targets made of gadolinium and gold for conventional and resonance neutron imaging**", submitted to JPS Conference Proceedings (Proc. of International Conference on Neutron Optics (**NOP2017**) 5-8 July, Nara, Japan, 2017).

平成29年度中性子イメージング専門研究会(2017/Dec/28-29)

- 2015年度の一般課題受付開始以降、順調に一般課題を実施
- ・装置整備を並行して実施

 CTシステム(陽子ビームパルスで制御)
 カラーI.I. + 高速度カメラシステムの評価
 空間分解能評価インジケータ
 → H30年度の再製作を計画中
- ・利用相談をお待ちしています

- 次回(2018B)課題公募: 5月中旬~6月中旬 (2017Bは2017/5/17(水)-6/7(水))