絶縁体分散リチウムイオン伝導体 の開発とリチウム拡散

(京大エネルギー科学研究科) 植松 将慶 高井 茂臣, 薮塚 武史, 八尾 健

中性子イメージング専門研究会(熊取) 12 / 29 / 2017

中性子ラジオグラフィーを用いたリチウム拡散係数の測定 スピネル型およびペロブスカイト型固体電解質 LiMn₂O₄リチウム電池正極材料

NASICON型リチウムイオン伝導体LATPの絶縁体分散による イオン伝導率の向上

LaPO₄分散粒子の形成と絶縁体分散効果

LATPの拡散係数の推定とラジオグラフィー実験 LATPのラジオグラフィー実験に向けて

○ 中性子ラジオグラフィーによるHやLiの検出

応用例:

構造材料の欠陥,植物の水分の分布, エンジンの燃料の分布, 燃料電池の水の分布,リチウム電池のLi, 水素吸蔵合金中のHの分布

P.VON DER HARDT: NRG Handbook, D.REIDEL, HOLLAND, 1981

○ 中性子ラジオグラフィーによる同位体拡散測定

中性子の減衰係数 ⁶Li >> ⁷Li

0 0 0 0 0 0 0 0 0

......

それぞれ⁶Liおよび⁷Liからなる固体電解質で 拡散対を形成し,張り合わせて高温で保持

○ Li_{4/3}Ti_{5/3}O₄拡散対のNR像

Distance, x / mm

拡散温度: 880℃, 拡散時間: 1, 4, 9, 16, 25時間.

LISICON拡散対の同位体プロファイル

LiイオンはAサイト中の空孔を介して移動

Electric conductivity of $La_{2/3-x}Li_{3x}TiO_3$ at 300K. After Inaguma et al. (1994). 中性子ラジオグラフィー像と透過強度

Distance, x / mm

8

0 0

Ο

Ο

Ο

0

8

0

0

0

0

60

ծ

Ο

100

8

0

0

ര

8

0

0

Ο

0

150

NR image and numerical gray level for standard samples and diffusion sample of $La_{0.5}Li_{0.5}TiO_3$ (x = 0.117) annealed at 350°C for 3.0 h. The ^NLi ratios to the total lithium content ($^{N}Li / (^{N}Li + ^{7}Li)$) were indicated above the NR image.

(a) ⁶Li concentration profile of ⁶LiNO₃-smeared La_{2/3-x}Li_{3x}TiO₃ (x = 0.117) diffusion sample annealed at 300°C for 3 h. The corresponding NR image is put in the inset. (b) $\ln c(^{6}\text{Li}) - \Delta x^{2}$ plots.

○ La_{2/3-x}Li_{3x}TiO₃の拡散係数

(a) D^{*t} plots against the actual annealing time for $La_{2/3-x}Li_{3x}TiO_3$ (x = 0.117) diffusion samples. (b) Arrhenius plots of the diffusion coefficient of $La_{2/3-x}Li_{3x}TiO_3$.

○ 拡散係数のAサイト空孔濃度依存性

Vacancy content in La_{2/3-x}Li_{3x}TiO₃

S. Takai, T. Mandai, Y. Kawabata, T. Esaka, Solid State Ionics, 176, 2227-2233, 2005.

○ 同位体濃度校正曲線

○ LiMn₂O₄の拡散プロファイル(800°C, 3 h)

 $c_{\rm N}$

中性子ラジオグラフィーを用いたリチウム拡散係数の測定 スピネル型およびペロブスカイト型固体電解質 LiMn₂O₄リチウム電池正極材料

NASICON型リチウムイオン伝導体LATPの絶縁体分散による イオン伝導率の向上

LaPO₄分散粒子の形成と絶縁体分散効果

LATPの拡散係数の推定とラジオグラフィー実験 LATPのラジオグラフィー実験に向けて

○ 無機固体電解質

(ex. **リチウムイオン伝導性**無機固体材料^[1])

Composition Conductivity at 25 °C / Scm⁻¹

Li _{9.54} Si _{1.77} P _{1.44} S _{11.7} Cl _{0.3}	2.5 × 10 ⁻²
Li ₁₀ GeP ₂ S ₁₂	1.2×10 ⁻²
$57Li_2S \cdot 38SiS_2 \cdot 5Li_4SiO_4$	2.0 × 10 ⁻³

Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃	7.0×10 ⁻⁴
Li _{0.34} La _{0.51} TiO _{2.94}	1.4×10 ⁻³
$Li_7La_3Zr_2O_{12}$	3.0×10 ⁻⁴

酸化物系固体電解質の導電率を向上を目指す。

- [1] R. Kanno et al., Nature Materials 10, 682–686 (2011).
 - M. Tatsumisago et al., Solid State Ionics 78, 269-273 (1995).
 - H. Aono et al., J. Electrochem. Soc. 4, 1023-1027 (1990).
 - M. Itoh et al., Solid State Ionics 1, 203-207 (1994).
 - M. Murugan et al., Angew. Chem. Int. Ed. 46, 7778 –7781 (2007).

硫化物系 〇イオン伝導性 〇低い粒界抵抗 ×大気安定性

○大気安定性 ×粒界抵抗の低減が難しい

> 絶縁体分散効果

固体電解質中に絶縁体粒子を分散させることで イオン伝導率が1桁程度上昇する。^[2] (ex. LiI-Al₂O₃, LiBr-Al₂O₃, AgI-Al₂O₃)

他にも LiI-Al₂O₃, LiBr-Al₂O₃, AgI-Al₂O₃ など

ハロゲン化物の系がよく知られているが、 酸化物系での報告は未だ少ない

Conductivity of the LiI-Al₂O₃ electrolyte as a function of Al₂O₃ content at $25^{\circ}C^{[2]}$

[2]C.C. Liang, J. Electrochem. Soc. 120 (1973) 1289.

○ LATP – LLTOコンポジット(先行研究)

[6] H. Onishi et al., Electrochemistry. 84(12), 967–970 (2016).

○ 研究目的

(先行研究) LATP-LLTOの導電率向上 → LaPO₄の分散効果によるもの と結論づけた

'LLTO(= Li_{0.35}La_{0.55}TiO₃)の分解 → 生じたLi, TiによってLATP(= Li_{1.3}Al_{0.3}Ti_{1.7}(PO₄)₃)の組成がズレる ? TiO₂など他の結晶が形成する可能性。

本研究では、この導電率向上が、 LLTO分解によるものではないこと LaPO₄の分散性に依存していること を示したい。

La供給源としてLa2O3をLATP中に分散させ、 生成させたLaPO4粒子による、導電率向上を目指す。

・La2O3添加によって、最大で<mark>約2.2倍の導電率向上</mark>がみられた。 ・LATPとLaPO4の 二相のみからなる、目的複合材料が得られた


```
○ 実験結果
```


LATP-xwt.%La2O3の反射電子像

 La_2O_3 添加量が8wt.%以上の領域では、LaPO₄の顕著な凝集がみられた。

o まとめ

- ◎ LATP中にLa₂O₃微粒子を分散させた後、焼成処理を行うことで、 LATP-LaPO₄コンポジットを合成した。
- ◎ La₂O₃の添加量が8wt.%までは、添加量増加に従って導電率の向上が みられたが、それ以上添加すると導電率は低下した。

LATP-LLTO、LATP-La2O3系の導電率向上は、 LaPO₄の分散効果によるものであると確かめられた。

絶縁体分散効果は酸化物系でも顕著にみられることが示唆された。

◎ La₂O₃の添加量が12wt.%以上のとき、顕著なLaの凝集がみられた。

中性子ラジオグラフィーを用いたリチウム拡散係数の測定 スピネル型およびペロブスカイト型固体電解質 LiMn₂O₄リチウム電池正極材料

NASICON型リチウムイオン伝導体LATPの絶縁体分散による イオン伝導率の向上

LaPO₄分散粒子の形成と絶縁体分散効果

LATPの拡散係数の推定とラジオグラフィー実験 LATPのラジオグラフィー実験に向けて Nernst-Einsteinの式から求めた拡散係数

○ 標準サンプル無しで拡散測定

原子炉の定常中性子ではないので、ビーム孔前でのスキャンはしない.

Lambert-Beerの式とFickの解より

$$\ln\left(\frac{I}{I_{o}}\right) \sim c = \frac{M}{\sqrt{D^{*} \cdot t}} \exp\left(-\frac{x^{2}}{4D^{*} \cdot t}\right)$$

したがって,

$$\ln\left[\ln\left(\frac{I_{o}}{I}\right)\right] = -\frac{x^{2}}{4D^{*} \cdot t} + k$$

り: ⁷Liのみからなるサンプルの透過強度

I: 拡散試料の各位置における透過強度

パルス中性子では時間によって 僅かな中性子束のばらつき 中性子束のビーム孔内での ばらつきが少ないと期待 拡散試料と⁷Liのみからなる 標準試料を一緒に測定 (I₀/Iを測定)

課題

同位体濃度と透過強度の対数 のリニアリティー

最適な中性子エネルギー領域

