Development of counting-type detectors for energy-resolved neutron imaging at RADEN

Joe Parker CROSS BL22 Group

平成29年度中性子イメージング専門研究会 京都大学原子炉実験所 29 Dec 2017

Neutron imaging detectors at RADEN

Camera type

- Single-mirror CCD system (Andor iKon-L, EMCCD)
- Neutron color I.I. (high-res, highspeed)

Counting type

- nGEM (¹⁰B)
- µNID (³He)
- LiTA12 (⁶Li)

Counting-type detectors at RADEN

	nGEM	μNID	LiTA12
Detector type	Micropattern	Micropattern	Scintillator
Converter material	¹⁰ B	³ He	۶Li
Active area	100 x 100 mm ²	100 x 100 mm ²	50 x 50 mm ²
Spatial resolution	1 mm	0.1 mm	3 mm
Time resolution	10 ns	0.25 µs	40 ns
Efficiency (thermal)	10%	26%	23%
Count rate	< 0.5 Mcps	1 Mcps	6 Mcps
Gamma sensitivity	10-4	< 10 ⁻¹²	low

Counting-type detectors at RADEN

Focus of development at RADEN

	nGEM	μNID	LiTA12
Detector type	Micropattern	Micropattern	Scintillator
Converter material	¹⁰ B	³ He	۶Li
Active area	100 x 100 mm ²	100 x 100 mm ²	50 x 50 mm ²
Spatial resolution	1 mm	0.1 mm	3 mm
Time resolution	10 ns	0.25 µs	40 ns
Efficiency (thermal)	10%	26%	23%
Count rate	< 0.5 Mcps	1 Mcps	6 Mcps
Gamma sensitivity	10-4	< 10 ⁻¹²	low

中性子イメージング専門研究会 29 Dec 2017 J. Parker

Current performance

Development of counting-type detectors

- Optimization of Li-glass detector
 - Improve spatial resolution using super resolution techniques
- Continuing development of µNID
 - Optimization of detector hardware/analysis algorithms
 - Small-pitch MEMS µPIC
 - µNID with boron converter
- Improvement of control/analysis software for Li-glass and μNID
 - Integration into RADEN control system
 - Optimization of analysis code, improve ease-of-use

Lita12

Li-6 time analyzer 2012 (LiTA12)

- Li-glass scintillator with Ce activator (GS20) (2.1 x 2.1 x 1mm³ x 256)
- Hamamatsu H9500 multianode PMT
- Improve spatial resolution with super resolution techniques
 - Charge centroiding with single, flat scintillator
 - Composite multiple images with sub-pixel shifts

Li-glass detector parameters

Area	5 x 5 cm ²
Spatial resolution	3 mm
Time resolution	40 ns ~
Efficiency (thermal)	23%
Count rate	6 Mcps

LiTA12 with charge centroiding

- 1mm thick ⁶Li-glass plate in place of pixels
- Spatial resolution improved by the centroid computation
- ~0.7 mm was obtained for both Au, Gd indicators

LiTA12 with multi-image compositing

6 x 6 scan of Gd test chart

- 0.5 mm step size
- 36 images total

FOV: 50 x 50 mm²

LiTA12 detector head

Detector on remote controlled stage Gd test target

LiTA12 with multi-image compositing

6 x 6 scan of Gd test chart

- 0.5 mm step size
- 36 images total

FOV: 50 x 50 mm²

Simple reconstruction indicates it should be possible to extract sub-pixel features

LiTA12: current and expected performance

Standard µNID

µPIC-based neutron imaging detector (µNID)

Neutron detection via ³He

- CF₄-isobutane-³He (45:5:50) gas mixture at 2 atm
- 3-dimensional tracking of decay pattern
- Energy via time-over-threshold
- Compact ASIC+FPGA data encoder

中性子イメージング専門研究会 29 Dec 2017 J. Parker

Performance of standard µNID

Performance characteristics							
Active area	Spatial resolution	Time resolution	γ- sensitivity	Efficiency @25.3meV	Rate capacity	Effective max. rate	
10 x 10 cm ²	0.1 mm	0.25 µs	< 10 ⁻¹²	26%	8 Mcps	1 Mcps	

Spatial resolution at RADEN

- Refinement of neutron position reconstruction algorithm
- Image of Gd test pattern
- L/D: 5000, Exposure: 1.5 hours
- 10% contrast at 5 lp/mm (100µm line width)

Image of Gd test target

Optimization of rate performance

- Revised data encoder hardware (100BASE-T → Gigabit Ethernet)
 - → About 7 times increase in rate capacity
- Change from Ar to CF₄ based gas mixture
 - → About 2 times increase due to smaller event size
- Total increase in count rate capacity from 0.6 to 8 Mcps
- Usable rate limited by offline analysis

100Mb/s vs Gb Ethernet

Improvement of clustering algorithm

- Raw hits are clustered into neutron events (~14 hits/ event)
- Change from single-linkage algorithm to DBSCAN-based algorithm with explicit pile-up event resolution
- Event loss improved from 2% at 400 kcps to 2% at 1 Mcps
 - Data taken with fixed area and increasing neutron flux
 - Efficiency of analysis determined by comparing numbers of raw hits and reconstructed neutron events

Event reconstruction efficiency

µNID analysis GUI/control software

- Preparing new GUI for offline analysis
 - Focus on ease-ofuse
- Preparing new control software
 - Based on DAQ middleware
 - Integration into beam line control system (IROHA2)

Analy	/sis A	analysis setup
N	ew analysis	utput directory.
Calib	ration	
т	р	arameters directory.
Tr	acking offsets	
	R	AW data directory.
	µNID Analysis	
t	Analysis	Analysis result - koyanagi/analysis08
Со	New analysis	Plots Summary & Log Debug Info
1	Calibration	
	тот	Plots
- 11	Tracking offsets	
	Track length	
	Track length Template fit	
	Track length Template fit Check results	

Small-pitch MEMS µPIC

Small-pitch MEMS µPIC

- Improve spatial resolution by reducing strip pitch
- Develop small-pitch µPIC
 - Standard µPIC (400µm) → limit of printed circuit board process
 - Manufacture using MEMS on silicon substrate (大日本印刷)
 - Started with small test element (14 x 14 mm²); now preparing larger MEMS µPICs (55 x 55 mm²)
- Initial tests found issue with gain stability
 - Steady increase under neutron irradiation → effect of Si substrate

Surface of MEMS µPIC (digital microscope)

MEMS µPIC tests at RADEN

- MEMS µPIC gain observed to increase with neutron exposure
- Grounding Si substrate appeared to stabilize gain
- First image successfully taken after stabilizing gain

MEMS µPIC gain vs time 12.0 Anode HV: Grounded 590V -Floating 11.5 **Gain (a.u.**) 11.0 Anode HV: 410V 10.0 9.5 0:00 1:00 2:00 3:00 4:00 5:00 Elapsed time (min)

µNID with boron converter

µNID with boron converter (B-µNID)

- Increase count rate capacity by reducing event size
 - Switch from ³He (p,t) to ¹⁰B (α,Li) for <u>3x smaller event</u> <u>size</u>
 - Trade-off in spatial resolution
- µNID with flat boron converter (for initial testing)
 - Thin ¹⁰B layer \rightarrow <u>low</u> <u>efficiency</u> (3~5%)
- Consider ways to improve detection efficiency

Expected performance			
Efficiency@25.3meV	3~5%		
Time resolution	10 ns		
Spatial resolution	0.4~0.5 mm		
Peak count rate	20~30 Mcps		

Spatial resolution study at RADEN

- Study of spatial resolution, event size vs. gas pressure (1.2 ~ 1.6 atm)
- L/D:1000, Exposure time: 15 mins
- Spatial resolution estimated from contrast of line-pairs (MTF)
- Maximum count rate estimated from event size: <u>22 Mcps</u>

Pressure (atm)	1.2	1.4	1.6
Average hits/ event	5.86	5.42	4.82
MTF @0.6mm	27%	36%	41%
Spatial resolution @10% MTF (mm)	0.50	0.48	0.45

B-µNID and µNID

- µNID: ³He converter
- Larger event size but better
 position reconstruction

B-µNID (1.6atm) Spatial resolution: 0.45 mm

Spatial resolution: 0.1 mm

B-µNID and nGEM

B-µNID (1.6atm) Spatial resolution: 0.45 mm

- nGEM: similar boron-coating
- Ar:CO₂ (90:10) at 1 atm
- 128 x 128 strips, 0.8 mm pitch
- Spatial resolution about 1 mm

nGEM Spatial resolution: 1 mm

Increase efficiency of B-µNID

- Options for increasing efficiency
 - Insert additional boron layers (GEM, mesh, etc.)
 - Use micro-patterning of converter to increase surface area
- Preliminary simulations of patterned converters
 - Show improved efficiency and reduced event size

Simulation of boron converters

	Pitch (mm)	Depth (mm)	Event size	Eff. ratio
Flat	-	-	4.9	1
Square	0.4	0.2	3.8	1.1
Wedge	0.2	0.2	3.4	1.6

µNID: current and expected performance

Summary

- Development of detectors to meet the needs of conventional and energy-resolved neutron imaging at RADEN is ongoing
- Optimization of the LiTA12
 - Improved spatial resolution with flat scintillator and charge centroiding, promising results with multi-image compositing

Standard µNID

- Refining analysis for improved spatial resolution/image quality and improved rate performance
- Preparing easy-to-use analysis GUI and control software
- Continuing µNID development
 - Developing small-pitch µPIC for improved spatial resolution
 - Started testing of μ NID with boron converter