

J-PARCのパルス中性子イメージング装置 螺鈿の現状

日本原子力研究開発機構 J-PARCセンター 篠原 武尚 takenao.shinohara@j-parc.jp

螺鈿装置メンバー

甲斐哲也、及川健一、瀬川麻里子、中谷健、 廣井孝介、蘇玉華、關義親(J-PARC) 林田洋寿、J.D. Parker、松本吉弘、桐山幸治 (CROSS) 鬼柳善明(名古屋大)

平成30年度 中性子イメージング専門研究会@京大複合研 平成30年12月27日

Materials and Life Science Experimental Facility

CM Coupled moderator

23 Neutron Beam Ports Operation :20 Commissioning: 1

4 Muon Beam Ports

J-PARC Beam Power History

Beam Power [kW]

Beam Power [MWh] Accumulated

Scenario for 1MW Beam Power O

We are expecting full-power

operation on July 3rd.

Neutrino

LINAC

エネルギー分析型イメージング

中性子と物質等との相互作用のエネルギー依存性を解析 → 物理量の空間分布を可視化

- ✓ TOF分析 → エネルギー依存性の測定に適している
- ✓ エネルギー(波長)分解能が高い → $\Delta\lambda/\lambda$ < 0.5 %
- ✓ 幅広いエネルギーの中性子が使える → 冷中性子(meV)~熱外中性子(keV)

パルス中性子はエネルギー分析型イメージングに最適

RADEN -Energy-Resolved Neutron Imaging System-

世界最初のパルス中性子イメージング専用ビームライン

エネルギー分析型中性子イメージング装置

・パルス中性子の特徴を活かした新しいイメージン
 →核種情報・結晶組織情報・温度情報・磁場情報

高性能中性子ラジオグラフィ装置

- ・FOVと空間分解能に応じて検出器を選択可能
- ・高速CT再構成用計算環境を整備
- ・大型試料、特殊環境、その場観察の実験環境

新しい中性子イメージング技術開発環境

基本性能

ビームサイズとL/D

冷却水、ガス導入、電力、圧縮空気、クレーン

	Collimator	100x100	50.1mm¢ at 3.1m	26.4mmф at 4.3m	15mmф at 8m	5mmф at 8m	2mmф at 8m
L=23 m	L/D (calc.)	230	400	720	1000	3000	7500
	L/D (measured)	251	446	715	990	3005	-
	Beam Size (calc.)	100	250	300	144	173	181
	Beam Size (measured)	103(H) 104(V)	263(H) 265(V)	300(H) 301(V)	209(H) 162(V)	230(H) 197(V)	210(H) 197(V)

詳細はParkerさんの発表で

RADENで利用可能な検出器

- Δx=0.1mm, Δt=0.25μs, 1
 Mcps

画像検出器の状況

詳細はParkerさんの発表で

空間分解能の比較

nGEM Spatial resolution: 1 mm Count Rate: < 0.2 Mcps Efficiency: 10% B-μNID (1.6atm) Spatial resolution: 0.45 mm Count Rate: > 22 Mcps Efficiency: 3 ~ 5% µNID
Spatial resolution: 0.1 mm
Count Rate: 1 Mcps
Efficiency: 26%

 μNID : Now available for user programs.
 B-μNID : Development of ¹⁰B layer for higher efficiency is needed. Smaller pitch read-out board is under testing. 400μm -> 200μm

RADENの利用状況

- ✓ 2018年度の利用日数:176日
- 採択済み一般課題数:26課題
- ✓ 採択済み長期課題数:3課題

年間実施課題数は30課題程度 産業利用関係は徐々に増加 課題の約60%がエネルギー分析を活用

Proposals classified by technique (from 2015 to 2018A)

RADENの利用状況

Approved beam time in days (accumulated from 2015)

Approved beam time in days (Yearly trend)

Short Term Long Term Proj. Instr.

コミッショニング中は年間のビームタイムの 半分以上を内部で使用 →一般課題の利用日数割合を70%まで増加

Internal use (instrument + project use) is gradually reduced.

トモグラフィ実験

Roots of Soybean

測定の安定性が向上 測定途中での停止等の問題が改善 測定時間の短縮に向けて制御系の改良を実施中

エネルギー範囲を限定した測定 熱外中性子を用いた強吸収観察対象の撮像 計数型検出器を利用した飛行時間分析と組合せた実験(Parkerさん)

RADENの最近の成果

高空間分解能撮像試験

Fine spatial resolution ~ 15 µm (Thanks to Dr. A. Tremsin)

MCP detector

協力:<mark>東北大塚田教授</mark>

28mm

J-PARC

To clarify Boron concentration in melted fuels

溶融燃料模擬体の撮像

Energy dependent radiography

Detector : MCP

10keV-500eV

500eV-10eV

1eV-1meV

Epi-thermal neutron tomography For strong absorption material study

A model body for the Core Material Melting and Relocation (CMMR) study

Y. Abe and I. Sato of JAEA 14

詳細は関さんの発表で

-2

-3

Ni

1200

磁気有感型位相イメージング実験(偏極中性子位相イメージング)

1200

1300

- Al

600

Fe

1000

Fe

1000

1200

1300 Al

600

Ni

1200

1000

800

Sum

600

Difference

-2

-3

1200

今後の開発計画(その1) 空間分解能向上 世界のイメージング技術の動向 → 空間分解能の向上は不可欠

By Dr. P. Trtik@PSI MethodsX 4(2017) 492

Image of water distribution with thickness represented by color

J-P/

I I 0.0 mm Fuel Cell Imaging @NIST 中性子顕微鏡プロジェクト @PSI, NIST

1µmの空間分解能がターゲット

RADENの現状の技術

- ・ カメラ型 : CCDカメラで40µm
- ・ 計数型:µNIDで100µm

改善方法

- CMOSカメラの短時間撮像データの重 心処理
 - NIST, HZBで実証済みの技術を導入
- 暗箱のデザインの見直し
 GdOxシンチレータ
 光学レンズ配置の再検討
- µNIDに使用するµPIC読出し基板の 微細化(MEMS-µPICのテスト)

Liイオン2次電池内の電流密度分布の解析

電流が作る磁場の解析し、電池内部の電流分布を可視化

→ 地磁場の1/10程度の磁場

検出器位置で得られる偏極度の振動

$$\label{eq:phi} \begin{split} \Delta \varphi_s = \omega_s t = \gamma \mathsf{B}_s \cdot \mathsf{L}_s / \mathsf{v} & (\mathsf{Ramsey method}) \\ \Delta \varphi_s = 2 \omega_s t = 2 \gamma \mathsf{B}_s \cdot \mathsf{L}_s / \mathsf{v} & (\mathsf{Spin interferometry}) \end{split}$$

位相変化の感度 < 1 degree → 3 µT·cm for λ=6 Å

(偏極度解析→400µT·cm)

- J-PARC/MLFのパルス中性子イメージング装置「螺鈿」は2015年 より共用運転中
- エネルギー分析型中性子イメージング実験の本格的な実用化・応用 研究を推進
- 空間分解能の向上に関する試験を開始。今後さらなる高空間分解能 化に向けた開発を進める。
- ・ 位相イメージング開発を推進中。まもなく実際の利用が可能になる 予定。
- エネルギー分析型イメージングの高度化として、偏極中性子イメージングの磁場感度の向上を目指す。
- 利用相談・研究協力は随時受け付けています
 実験に関する質問・技術開発や実験環境への要望
 - → 遠慮なくお問い合わせ下さい

takenao.shinohara@j-parc.jp