螺鈿における 計数型イメージング検出器開発の現状

Joe Parker CROSS

平成30年度中性子イメージンブ専門研究会 京都大学複合原子力科学研究所 27 December 2018

Neutron imaging at RADEN

Conventional

- CCD camera detectors: 50-300µm spatial resolution, no TOF
- Radiography and computed tomography

Energy-resolved

- Event-type detectors: sub-mm spatial and subµs time resolutions, neutron energy via TOF
- Energy-dependent neutron transmission: macroscopic distribution of microscopic quantities

Radiography

Sample: Roots of soybean plant (Nakazono, Nagoya U.)

Event-type detectors at RADEN

	nGEM	μNID	LiTA12
Detector type	Micropattern	Micropattern	Scintillator
Converter material	¹⁰ B ³ He		۶Li
Active area	10 cm x 10 cm	10 cm x 10 cm	5 cm x 5 cm
Spatial resolution	1 mm	0.1 mm	3 mm/0.7 mm
Time resolution	10 ns	250 ns	40 ns
Efficiency (thermal)	10%	26%	23%
Global peak count rate	0.2 Mcps	>1 Mcps	6 Mcps
Gamma sensitivity	10-4	< 10 ⁻¹²	low

Current performance of event-type detectors at RADEN

Current performance of event-type detectors at RADEN

Development of counting-type detectors at RADEN

- Development of Li-glass detector
 - Improve spatial resolution using super resolution techniques
- Improvement of standard µNID
 - Optimization of analysis code, improved ease-of-use
 - Integration into RADEN control system
- New µNID development
 - Small-pitch MEMS µPIC for improved spatial resolution
 - µNID with boron converter for increased rate

LiTA12 with super resolution methods

- Centroiding with single
 scintillator (T.Kai et al., Physica B, 2018)
 - Pixels replaced with 1mm thick plate, event mode
 - Spatial resolution improved to ~0.7 mm
- Image stepping
 - Pixels, histogram mode
 - Composite multiple images
 taken at sub-pixel shifts
 - Spatial resolution may be improved → Develop reconstruction procedure
- New FPGA boards for event readout mode
- Data analysis software, integrated control software now in preparation

Area	5 cm x 5 cm	
Spatial res.	3 mm	
Time res.	40 ns ~	
Eff. (thermal)	23%	
Count rate	6 Mcps	

Gd test chart (pixel, histogram mode, resolution: 3mm)

Development of counting-type detectors at RADEN

- Development of Li-glass detector
 - Improve spatial resolution using super resolution techniques
- Improvement of standard µNID
 - Optimization of analysis code, improved ease-of-use
 - Integration into RADEN control system
- New µNID development
 - Small-pitch MEMS µPIC for improved spatial resolution
 - µNID with boron converter for increased rate

µPIC-based neutron imaging detector (µNID)

Neutron detection via n + ${}^{3}\text{He} \rightarrow p$ + t

Overall track length ~4 mm in gas

- Gaseous time-projection-chamber
 - CF_4 -i C_4H_{10} -³He (45:5:50) at 2 atm
 - µPIC micropattern readout
 - Compact ASIC+FPGA data
 encoder front-end
- 3-dimensional tracking of decay pattern + time-over-threshold
 - Accurate position reconstruction
 - Strong gamma rejection

µNID performance and usage at RADEN

Base performance characteristics					
Active area	10 x 10 cm ²				
Spatial resolution	0.1 mm				
Time resolution	0.25 µs				
γ -sensitivity	< 10 ⁻¹²				
Efficiency @25.3meV	26%				
Count rate capacity	8 Mcps				
Effective max count rate	> 1 Mcps				

At RADEN, µNID used primarily for:

- Magnetic imaging with polarized neutrons
- Phase-contrast imaging
- Bragg-edge transmission imaging

Image of Gd test target

Fine spatial resolution using template fit to TOT distribution

Initial development at RADEN

- Upgraded data encoder hardware and optimized gas mixture for increased rate
 - Increased peak rate from 0.6 Mcps to 8 Mcps
- Usable rate limited by event pile-up in offline analysis
 - Optimized clustering algorithm for rate > 1 Mcps
- Additional improvements with optimized gas mixture
 - Improved spatial resolution from 0.2 to 0.1 mm
 - Increased thermal neutron efficiency from 18% to 26%

µNID control software/analysis GUI

- New DAQ controller hardware and detector control software
 - Based on DAQ
 middleware
 - Full integration into beam line control system
 - In use since March 2018
- New browser-based UI for offline analysis
 - In use since April 2018
 - First update with simplified interface, better data visualization, etc., in October 2018

*DAQ controller and software by BBT

Software frameworks at the MLF

IROHA2 – Experimental device control system with web-based UI (MLF)

DAQ Middleware – Detector control and data collection (KEK)

<u>µNID analysis GUI</u>

🔴 🔍 🗋 μNID Analysis	×				Joe	
\rightarrow C \triangle (i) localhost:80	80/analysis				☆ & :	
Apps 🚖 Bookmarks 🧉 Apple	Yahoo!	YouTube	W Wikipedia 🛛 Google Maps 🗎	🗎 News 📄 Popular 🛭 😨 All the PAW FAQs	» 🗎 Other Bookmarks	
INID Analysis						
Analysis	Ana	alysis res	sults			
New analysis			🔍 🔍 📄 μNID Analysis	×		
			← → C ☆ (① localhost:8080/analysis/result/MEMS04/uNID1000681_20180401			☆ 💩
Conversion		_	👖 Apps ★ Bookmarks 🎕 Apple	Yahoo! D YouTube W Wikipedia 🔀 Google M	aps 📄 News 📄 Popular 🧃	All the PAW FAQs » 📄 Other Bookma
New conversion		Analysis	µNID Analysis			
Calibration		result		Applycic result - MEMS04/uN	1000681 201804	01
тот	1	Hussey01	Analysis	Analysis result - MEMISO4/UN	101000001_201004	
Tracking offente	2	test0030/	New analysis	Parameters Plots Summary & L	og	
Tracking offacto	3	test0029/3	Conversion			
Track length	4	4 test0028/5	New conversion	Plots		
Template fit	5	test0027/	Calibration	Neutron Y vs X		Neutron TOF
Check results	6	test0026/	тот	Neutron Y vs X	450000 🕮	Neutron TOF
		10510020/	Tracking offsets		400000 -	\wedge
	1	test0025/3	Track length		15, 20050	$\Lambda / \lambda = 1$
	8	test0024/3	Template fit		12 ⁷ 2 20000 20000	20000
	9	test0023/			l 🔨 🦕 🕴	
	10	test0022/	Check results	10 _ 78440 - 564	120300 - 50300 -	
	11	test0021/		0 10 20 30 40 50	• • • • • • • • • • • • • • • • • • •	10 20 30 40

Automated measurements

- Increased rate and integrated control
 - Perform complex measurements more easily
- Computed tomography with TOF
 - Quantify effects of scattering, beam hardening, etc.
 - Combine with energyresolved imaging techniques
- Dynamic samples
 - Fold TOF info with motion/ process frequency
 - Currently limited to cyclical processes

Computed tomography

Magnetic imaging of running motor

K. Hiroi et al., J. Phys.: Conf. Series 862 (2017) 012008

Continuing development with standard µNID

- Continue refinement of clustering, position reconstruction
- Update FPGA firmware for data encoders
 - Incorporate buffering for increased rate capacity above 10 Mcps
- Investigate new gas mixtures for increased efficiency, optimized event size
- Combine energy-resolved and conventional CT
 - Use feedback from energy-resolved CT to improve quantitativity of conventional CT
 - Combine resonance CT with conventional CT for improved visualization of isotopic density/temperature
 - Use Bragg-edge information from energy-resolved CT to guide conventional CT

Development of counting-type detectors at RADEN

- Development of Li-glass detector
 - Improve spatial resolution using super resolution techniques
- Improvement of standard µNID
 - Optimization of analysis code, improved ease-of-use
 - Integration into RADEN control system
- New µNID development
 - Small-pitch MEMS µPIC for improved spatial resolution
 - µNID with boron converter for increased rate

Small pitch for improved spatial resolution

- Develop small-pitch µPIC with MEMS manufacturing
 - Produced <u>215 μm pitch μPIC</u> (down from 400 μm)
 - Mfd. by DNP
- Tested at RADEN
 - Confirmed sufficient gain
 - Spatial resolution not improved as expected
 - Gain instability under neutron
 exposure
 - Spatial resolution: optimize gas for shorter track length
 - Gain stability: new MEMS µPIC with glass substrate prepared

Current PCB µPIC (400 µm pitch)

PRELIMINARY

MEMS µPIC with glass substrate (12/10)

Image from digital microscope

TGV µPIC – Thru-glass-via µPIC

- Initial testing performed at Kyoto U.
- Gain stability measured at RADEN
 - Improved over silicon substrate
 - Similar or slightly worse than PCB µPIC

PRELIMINARY

Imaging with the 215µm MEMS µPICs

215µm pitch Silicon substrate 400µm pitch PCB µPIC 215µm pitch Glass substrate

- Image quality with TGV µPIC looks good
- Resolution may be improved compared to PCB µPIC

Note: measurement statistics are different for each image

Boron converter for increased rate

- 3x smaller event size compared to ³He
 - Trade-off in spatial resolution
- µNID with flat boron converter for initial testing
 - Thin, 1.2µm ¹⁰B layer \rightarrow <u>low</u> <u>efficiency</u> (3~5%)

Initial testing at RADEN

- Maximum count rate of <u>22 Mcps</u>
- Spatial resolution of <u>0.45 mm</u>

Next:

- Prepare dedicated Boron-µNID system
- Optimize gas for shorter track lengths
- Design new converter for increased efficiency

Comparison of imaging for nGEM, B- μNID , and μNID

nGEM Spatial resolution: 1 mm

B-µNID (1.6atm) 0.45 mm

Standard µNID (³He) 0.1 mm

Current and projected performance of eventtype detectors at RADEN

Summary

- Development of detectors to meet the needs of energyresolved neutron imaging at RADEN is ongoing
- Lita12
 - Improved spatial resolution using super resolution techniques
 - Now preparing analysis/control software
- Standard µNID
 - Improved rate performance to over 1 Mcps
 - Fully integrated detector into RADEN control system
 - Begin study of energy-resolved CT with the μ NID
- New µNID development
 - Promising test of small-pitch µPIC on glass substrate → prepare larger-area test element
 - Confirmed operation of µNID with boron converter → prepare dedicated Boron-µNID detector system

RADEN and µNID development members

CROSS

Joe Parker (µNID Lead Developer)

Hirotoshi Hayashida Koji Kiriyama Yoshihiro Matsumoto

JAEA/J-PARC Center

Nagoya University

Kyoto University (µNID development)

KEK (LiTA12 development) Yoshiaki Kiyanagi

Toru Tanimori Taito Takemura Atsushi Takada Mitsuru Abe

Setsuo Satoh

Takenao ShinoharaTetsKenichi Oikawa (BL10)MaTakeshi NakataniMaKosuke HiroiYuh

Tetsuya Kai Masahide Harada (BL10) Mariko Sagawa Yuhua Su