中性子ラジオグラフィー法を用いた酸化物 ナノ粒子水熱合成プロセスの可視化

1) 名大・エ,2) 東北大・エ,3) JAEA

佐藤公星¹、佐々木遼介¹、髙見誠一¹、久保正樹²、 栗田 圭輔³、飯倉 寛³

Hydrothermal synthesis of metal oxide nanoparticles

Reactors for hydrothermal synthesis

T.Adschiri, et al., J.Am. Ceram. Soc. **75**, 1019 (1992)

Heating time ~ 5 min

~ 0.5 s

Topics

Batch-type reactor

Flow-type reactor

Course of heating

Dynamics of mixing

Synthesis with plug-flow reactor

Plug-flow reactor

Size of products

T.Adschiri, et al., in Materials Chemistry in Supercritical Fluids, Research Signpost, 79–97 (2005)

Q:Why the mode of mixing affected the products ?

Answer : Reaction rate is very fast.

Reaction rate << Mixing rate

I. Heated water and reactant solution are completely mixed.

2. Hydrothermal reaction gradually proceeds. Hydrothermal reaction proceeds with mixing.

Reaction rate >> Mixing rate

Mode of mixing affects the products.

How two streams are mixed ?

Mixing of two water streams

Difference in water density can be visualized.

Comparison between mixing modes

Observation of dynamic behavior was tried.

Experimental setup

Experimental setup

Outside of hatch

- Controllers of heater and pumps
- Temperature monitor

Mirror

Camera

Pumps

Neutron

Chiller

Wireless camera₀

Experimental conditions

Inner diameter: 4.8 mm (1/4 inch)

Qsc (g/min)	Q _{RT} (g/min)	T _{sc} (°C)	Resc	T _{mix} (°C)	Re _{mix}
8	2	390	1. × 0 ³	~379	8.7×10 ²
12	3	390	1.6×10 ³	~379	1.3×10 ³

Camera

FASTCAM SA5 (Photron) Nikon 105 mm F2.8 1024×1024 pixel 12 bits/pixel 60 fps

Image processing

as observed (1)

$$Abs = -\log \frac{I - I_{dark}}{I_{flat} - I_{dark}}$$
$$Abs_{filled} = -\log \frac{I_{filled} - I_{dark}}{I_{flat} - I_{dark}}$$
$$Abs_{empty} = -\log \frac{I_{empty} - I_{dark}}{I_{flat} - I_{dark}}$$
$$D = \frac{Abs - Abs_{empty}}{Abs_{filled} - Abs_{empty}}$$

Calculation of moving averaged images

SCW from side

Moving averaged images of absorbance

Previous results

Inner diameter: 4.8 mm

Recorded at 60fps, playback at 30 fps

SCW from top

Moving averaged images of absorbance

Previous results

Inner diameter: 4.8 mm

Neutron CT image

Streamline [m/s]

Recorded at 60fps, playback at 30 fps

Tentative summary

Dynamic behavior of mixing in a supercritical flow reactor was observed at 60 fps.

Next plans

- 1/8 inch mixer
- Higher frame rates
- Mixer with an inserted tube
- Different shape of mixer

Batch-type reactor

Batch reactor Course of heating 400 ~ 5 mL Temperature (°C) 300 200 100 Measured by a thermocouple in a reactor Heater 0 200 400 600 800 0 Time (s)

Metal ion solution was gradually heated to ~400°C. ex. M(NO₃)_n

What happens during heating ?

Density of liquid phase decreases at high temperature.

Dielectric constant decreases to ~20 at 300°C.

Metal ions can be soluble at around reaction temperature ?

Course of reaction

Reutron radiography of batch type reactor

Batch type reactor was heated using cartridge heater.

Experimental conditions

- I.25 mL of water
- 2.0 mL of Gd(NO₃)₃
 solution

Course of heating was measured for ~25 min.

Radiography condition

as observed (I)

Camera

iKon-L 936 (ANDOR) Nikon 105 mm F2.8

2048×2048 pixels 16 bits/pixel 0.2 fps (3.5 s/pixel)

Inner diameter: 5 mm

Abs =
$$-\log \frac{I - I_{\text{dark}}}{I_{\text{flat}} - I_{\text{dark}}}$$

Heating of water (1.25 mL)

Wolume of liquid and gas phases

Trapping of water at head ?

Heating of Gd(NO₃)₃ solution (2.0 mL)

Course of heating

23°C 350°C 375°C 385°C after 7.5 min 100°C 150°C 250°C 385°C 200°C 300°C Decrease in the density Bumping ? Gd³⁺ ion and/or Gd(OH)₃

Gd(OH)₃ was precipitated at bottom.

Tentative summary

Phase behavior of water in hydrothermal batchtype reactors was visualized.

Next plans

- Heating whole reactor
- Reactor exchanger
- Use of B³⁺ ions