

令和4年度中性子イメージング専門研究会@京都大学複合原子力科学研究所

元素識別イメージングに向けた 熱/熱外/高速中性子・X線同時ラジオグラフィ

〇武多 実紀, 佐藤 博隆, 加美山 隆

北海道大学 大学院工学院

放射線の断面積の比を利用した元素同定

放射線の透過率と断面積の関係

$$T = \exp(-nt\sigma)$$

 $(T: 透過率, n: 原子数密度, t: 試料厚さ, \sigma: 断面積)$

X線(X)と中性子(n)の各透過率の 自然対数の比

$$\frac{\ln T_{\rm X}}{\ln T_{\rm n}} = \frac{\sigma_{\rm X}}{\sigma_{\rm n}}$$

面密度に依存しない元素固有の パラメータ

元素同定型のイメージングが可能

先行研究(1/2): 中性子・X線シナジーイメージングによる元素同定

中性子画像とX線画像から各画素における透過率のヒストグラムを作成したとき、物質によって現れるスポット位置が異なる。

⇒中性子とX線では元素ごとの断面積の大小が異なるため。

各画素における透過率のヒストグラム

このヒストグラムと σ_X/σ_n の情報を利用することで、どの核種がどの位置に存在するかを求めることが可能。

先行研究(2/2): 得られる元素イメージングとシナジーイメージングの課題

各画素における透過率のヒストグラム

元素イメージング画像

 σ_{X}/σ_{n} (X線断面積/熱中性子断面積)がほぼ同じ元素については、 元素を一意に同定できない場合がある

解決方策の提案:中性子エネルギーのマルチ化

解決方策

中性子のエネルギーをマルチ化する ことで複数断面積比の画像を取得

元素識別能力を向上できるのでは?

北海道大学電子加速器駆動パルス中性子源「HUNS」の利用

- 中性子発生源を変更することで冷/熱/ 熱外/高速中性子を供給できる。
- 電子加速器を利用しているため、X線 の発生も可能。

マルチエネルギー中性子・X線両用 イメージングの場として有用

研究の目的と内容

研究の目的

新たな元素識別イメージングを目指した 広エネルギー中性子・X線両用イメージングシステムの開発

研究の内容

- 放射化コンバータとX線IPを用いたHUNS用イメージングシステム の開発
- 熱外中性子を含めたエネルギー選択的中性子イメージング
- マルチエネルギー中性子・X線同時イメージングの試験

研究内容

- ① 放射化コンバータとX線IPを用いたHUNS用イメージングシステム の開発
- ② 熱外中性子を含めたエネルギー選択的中性子イメージング
- ③マルチエネルギー中性子・X線同時イメージングの試験

HUNSでのIPシステムの構築

IPシステムの整備

北大の触媒科学研究所で使用されていたSAXS装置から移設し、HUNSの放射線管理区域近くで利用できるように整備した。

使用する機器の情報

- ◆使用するIP BAS-SR(127 mm×127 mm)
- ◆IP読み取りスキャナー 株式会社リガク RIGAKU DS3C R-AXIS
- ◆読み取り画像の仕様 16 bit, 125 mm / 450 pixels

間接中性子イメージング法を利用したマルチエネルギー中性子・X線イメージングの方法

放射化コンバータを用いた間接中性子イメージング

①ビーム照射

中性子ビーム放射性被写体を核種

②転写

利点

- コンバータの種類を変えることでエネルギー選択的に中性子イメージングが可能。
- IPをビームライン上に置くことでX線直接イメージングが可能。

■各エネルギー帯で放射化に利用する中性子反応

JENDL-4.0

✓ 熱中性子 : 1/∨吸収反応

✓ 熱外中性子 : 共鳴吸収反応

✓ 高速中性子 : 閾値核反応

54Feの中性子反応断面積

高速中性子用コンバータとして利用したAIの閾値核反応

0.5 mm厚さのAIコンバータを使用した

熱/熱外中性子コンバータとして利用したAuの(n,γ)反応

JENDL-4.0

Auは熱中性子との反応・共鳴吸収が共に大きい。

0.02 mm厚さのAuコンバータを使用した

共鳴中性子フィルターを利用した熱中性子コンバータの提案

Auは共鳴吸収が大きく、熱中性子以上に共鳴中性子を捉えてしまう

熱中性子コンバータと同一核種を 共鳴中性子のフィルターにすることで 共鳴中性子を除去した熱中性子成分のみのイメージング

ビーム上流コンバータ⇒熱外中性子イメージング ビーム下流コンバータ⇒熱中性子イメージング

研究内容

- ① 放射化コンバータとX線IPを用いたHUNS用イメージングシステム の開発
- ② 熱外中性子を含めたエネルギー選択的中性子イメージング
- ③ マルチエネルギー中性子・X線同時イメージングの試験

高速中性子イメージング

高速中性子イメージング実験の概要

高速中性子イメージング結果

高速中性子成分のイメージングに成功

熱外中性子イメージング

熱外中性子イメージング実験の概要

熱外中性子イメージング結果とその考察

被写体のセットアップ

- 熱中性子を非常に強く吸収するCdが写らなかった。
 - ⇒共鳴吸収が強く効いた。
- ¹⁹⁷Auの閾値エネルギーは8.1 MeVで、HUNSの線源から供給される高速中性子の 主なエネルギーよりかなり大きい。
 - ⇒高速中性子で得られた画像ではない。

熱外中性子(共鳴吸収)が強く効いたイメージング画像

共鳴フィルター付き熱中性子イメージング実験

共鳴フィルター付き熱中性子イメージング実験の概要

共鳴フィルター付き熱中性子イメージング結果

被写体のセットアップ

イメージング結果

熱中性子を非常に強く吸収するCdとGOS(Gd)がはっきりと写った

熱中性子成分によるイメージング画像が得られた

共鳴中性子フィルターの空間分解能向上への寄与

共鳴中性子フィルターが画像の空間分解能の向上に寄与

研究内容

- ① 放射化コンバータとX線IPを用いたHUNS用イメージングシステム の開発
- ② 熱外中性子を含めたエネルギー選択的中性子イメージング
- ③ マルチエネルギー中性子・X線同時イメージングの試験

X線·熱/熱外/高速中性子同時イメージング実験の概要

IPとコンバータ箔のセットアップ

MeVオーダーのX線直接イメージングの結果と課題

被写体のセットアップ

Feステップウェッジ Pbステップウェッジ

B:軽元素、Pb:重金属

Fe: 広エネルギー中性子で強い散乱

Cd: 熱中性子に対して大きな吸収

<u>イメージング結果</u>

- ✓ 高フラックスなビーム照射によりIPが 飽和状態になった
- 原子番号が小さいBや薄いCdが写らなかった。
- 原子番号の大きいPbや厚いFeが写った。

高エネルギーX線イメージング画像が得られた

マルチエネルギー中性子・X線同時イメージングの課題

被写体のセットアップ

B:軽元素、Pb:重金属

Fe: 広エネルギー中性子で強い散乱

Cd: 熱中性子に対して大きな吸収

高速中性子イメージング結果

- ●Alコンバータは、8時間の照射では十分に放射化されなかった。
- ●ターゲットからの距離が遠かった。

各量子ビームイメージングの照射時間と照射距離のバランス調整

まとめ

新たな元素識別イメージングを目指した 広エネルギー中性子・X線両用イメージングシステムの開発

- ① 放射化コンバータとX線IPを用いたイメージングシステムの開発
- ② 熱外中性子を含めたエネルギー選択的中性子イメージング
 - MeV領域中性子の閾値核反応を利用した高速中性子イメージング
 - 同一核種の共鳴中性子フィルターを用いた**熱/熱外中性子**イメージング
 - 共鳴中性子フィルターの利用による空間分解能の向上
- ③ マルチエネルギー中性子・X線の同時イメージングの試験
 - X線と熱/熱外中性子を捉えることに成功したが、高速中性子は捉えられなかった
 - 照射時間と照射距離のバランス調整に課題