Estimation of ecological half-lives of radiocesium in marine biota at the offshore of Fukushima, Japan

Kayoko IWATA^{*}, Keiko TAGAMI, and Shigeo UCHIDA

Office of Biospheric Assessment for Waste Disposal, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan *k-iwata@nirs.go.jp

A large amount of radionuclides was released by TEPCO's Fukushima Daiichi Nuclear Power Plant (FDNPP) into the environment on account of the accident that occurred here in March, 2011, and this included cesium-137 ($T_{1/2} = 30$ y). The aim of this paper is to report the ¹³⁷Cs concentrations in marine biota that were contaminated due to the FDNPP accident, and to evaluate the ecological half-life (T_{eco}) in nature. The T_{eco} of ¹³⁷Cs in the oceanic community along the coastline of Fukushima was calculated on the basis of food monitoring data. The monitoring data were re-organized by the southern and northern sampling areas with respect to the FDNPP site. The regional comparison of ¹³⁷Cs contamination showed that the concentration in the southern region was higher; however, the calculated T_{eco} for each species was similar in the southern and northern regions. Furthermore, T_{eco} obtained from the field data was compared to literature values of the biological half-life (T_b) etimated under laboratory conditions. The result showed that seaweed and bivalves had similar values of T_{eco} and T_b . On the other hand, demersal fish (which live near, or on the seabed), had longer T_{eco} compared to T_b . It is conceivable that one reason for the longer T_{eco} of demersal fish is prolonged exposure due to diet.

Key Words: radiocesium, marine environment, biota, ecological half-life, trophic level

1. Introduction

The Great East Japan Earthquake, a magnitude 9 earthquake, triggered the TEPCO Fukushima Daiichi Nuclear Power Plant (FDNPP) accident of 11^{th} March 2011. The subsequent tsunami caused severe destruction at the site, which led to an atmospheric discharge of radionuclides. Cesium-137 was one of the major radionuclides released into the environment by the accident. The total reported atmospheric discharge of ¹³⁷Cs was approximately 1.5 x 10^{16} Bq¹⁾; furthermore, there was a discharge of contaminated water into the sea, increasing the total amount of ¹³⁷Cs to approximately 3.5×10^{15} Bq²⁾.

The initial dispersion of waterborne ¹³⁷Cs occurred southward due to the (southward) current flowing along

the coastline of the Fukushima Prefecture, and was eventually spread eastward by the Kuroshio Current²⁾. As a result, higher concentrations of ¹³⁷Cs were detected in the ocean surface water to the south of the FDNPP site and north of the Kuroshio Current^{3), 4)}. Moreover, several measurements of ¹³⁷Cs concentrations have shown that the FDNPP accident led to the contamination of marine life^{4), 5)}.

Due to the long radioactive half-life of 137 Cs (30 y), the rate of loss in marine life is inevitably a serious matter to consider for consumers. To estimate the rate of loss in marine organisms, the biological half-life (T_b) of 137 Cs has been studied under controlled settings, however, the ecological half-life (T_{eco}) of 137 Cs in marine biota, which reflects field data, is not as well studied. Such field data are more practical and useful than controlled laboratory data as they account for the influence of existing ecological and environmental factors.

This study aims to address the dispersion trend and T_{eco} of ^{137}Cs in marine biota found offshore of the Fukushima Prefecture, based on field data. We will also compare and contrast T_b with T_{eco} , and reveal the mechanisms or trends of ^{137}Cs accumulation in the local marine biota.

2. Materials and Methods

(1) Definitions

In this paper the effective half-life in wild biota is referred to as the ecological half-life (T_{eco}), as opposed to the biological half-life (T_b).

a) Ecological half-life (T_{eco})

 T_{eco} indicates the half-life of a certain radionuclide in organisms at a given site in which the contamination has occurred; for ¹³⁷Cs in marine organisms, it is the time required to achieve a 50% reduction in the average ¹³⁷Cs concentration in tissue. In this case, the rate of uptake is not controlled, and the loss rate reflects all of the possible processes, including biological elimination and radioactive decay. In this study, T_{eco} focuses on half-life in organisms and is distinguished from general environmental half-life concept, which includes nonliving components of the environment.

b) Biological half-life (T_b)

 T_b is the time period required for a 50% reduction of a radionuclide in a distinct species by biological elimination, as estimated in laboratory experiments or under controlled conditions. In these settings the radionuclide (¹³⁷Cs) is generally fed to the target organisms in water, or a digestible form. Once the concentrations reach equilibrium, the organisms are transferred to an uncontaminated environment to monitor the loss rate.

(2) Sampling areas and data selection

The concentration data were collected from the food monitoring data provided on the website of Fukushima Prefecture⁵⁾. The sampling period in this study was 535 days after the TEPCO accident. The monitoring data, used for the present study, were gathered from two sampling areas: the southern (Iwaki-shi), and the northern (Shinchi-cho, Soma-shi, Minami Soma-shi)

parts with respect to the FDNPP site.

A total of 8 species were investigated, all of which were collected in the southern part, whereas only 5 species were collected in the northern part (see Table 1). Data values below detection limits were omitted from the present data. In addition, small portions of data which were sampled discontinuously in time were also omitted—for sand crab, data after the 400th day were excluded due to a break of approximately 200 days, for which the trend data was uncertain.

(3) Calculation and statistical analysis

To calculate each T_{eco} , the data were plotted on a logarithmic scale where an exponential trend results in a linear best-fit. The data were plotted with the number of days after the accident along the x-axis, and the ¹³⁷Cs activity along the y-axis. Using the calculated linear fits, T_{eco} was estimated.

(4) Data comparisons

In order to compare the ¹³⁷Cs contamination in the southern and the northern areas, the ¹³⁷Cs concentrations on the 100th day were estimated for each of the 8 species using the computed exponential equation; the 100th day was chosen as an arbitrary point of comparison.

In addition, T_{eco} and T_b from references were compared among organisms of similar groups, including seaweeds, bivalves, and demersal fish. For

Table 1 Sample details and ecological half-lives of ¹³⁷Cs for each species caught offshore of Fukushima.

Species	Area*	Number	Correlation	T _{eco}	
		of	coefficient	p-value	(days)
		samples	(r)		
Arame	South	19	-0.854	< 0.0001	50
	North	ND			
Sakhalin Surf	South	43	-0.942	< 0.0001	85
clam	North	ND			
Sand crab	South	4	-0.949	0.0515	52.8
	North	4	-0.956	0.0445	66
Whitebait	South	39	-0.729	< 0.0001	53
	North	ND			
White rockfish	South	47	-0.415	0.0037	258
(Shiromebaru)	North	25	-0.237	0.2546	435
Japanese jack	South	21	-0.604	0.0037	226
mackerel	North	19	-0.120	0.6252	1028
Marbled sole	South	92	-0.229	0.0282	555
	North	113	-0.293	0.0016	438
Japanese	South	100	-0.173	0.0849	648
common skate	North	78	-0.162	0.1560	1007

ND: Not available or insufficient data

*Sampling area with respect to the FDNPP site

Table 2 Regional comparison of ¹³⁷Cs concentrations in marine life using the computed exponential equations, and the ecological half-life of ¹³⁷Cs between the common species.

Species	¹³⁷ Cs on th	concen ne 100 ^{ti} g/kg-w	tration ^h day vet)	T _{eco} (days)			
	South	North	Ratio	South	North	Ratio	
Sand crab	189.2	29.5	6.4	53	66	0.80	
White rockfish	422.0	105.8	4.0	258	435	0.59	
Japanese jack mackerel	49.8	27.5	1.8	226	1028	0.22	
Marbled sole	122.9	49.1	2.5	555	438	1.27	
Japanese Common skate	236.3	62.9	3.8	648	1007	0.64	

example, Arame (a species of kelp) was compared with *Fucus* (a brown algae) as both are classed as seaweeds.

3. Results and discussion

The calculated T_{eco} and p-values for correlations between the ¹³⁷Cs concentrations (log converted) and time are given in Table 1. Using these data, further analysis was carried out as follows.

(1) Area comparison of the ¹³⁷Cs concentrations

The area comparison of the ¹³⁷Cs concentrations on the 100th day showed that the ratio of the south and north values ranged from 1.8 to 6.4 (see Table 2). Based on these 5 comparisons the marine life in the south contained higher ¹³⁷Cs concentrations than those in the north. It should be noted that the strength of the correlation of the exponential trend lines varied among species and between the two regions. Consequently, the regionally different ¹³⁷Cs concentrations in marine biota tended to correspond to the ¹³⁷Cs dispersion trend in seawater.

(2) Area comparison of the Teco values

A comparison of the T_{eco} results indicate that the ratio of the south and north concentrations ranged from 0.22 to 1.27 (see Table 2). Marbled sole (a flatfish species), and sand crab exhibited south/north ratios of 0.80 and 1.27 respectively, indicating no regional difference in T_{eco} for the same species. There may not be much difference in the environment between the two areas. As the correlation became weaker, the ratio

values varied more.

(3) Comparison between T_{eco} and T_{b}

Seaweed and bivalve data in the field (T_{eco}) showed similar values to T_b data presented in the literature, and the ratios of the field data to the reference data^{6), 7)} were 0.93 for seaweed and 1.1 for the bivalves (see Table 3). The probable causes for these results are nonmetabolic ¹³⁷Cs adsorption for seaweed, uptake routes, and a high turnover rate for bivalves^{8), 9)}.

In a previous study, ¹³⁷Cs uptake in seaweed was driven directly by the ¹³⁷Cs concentration in the surrounding water, although a variation in the ¹³⁷Cs uptake and T_b among species was observed⁸⁾. The concentration of ¹³⁴Cs in the seawater after the accident showed a 1000-fold decrease (from 10^8 to 10^5 Bq/m³) from April to May 2011, where the activity ratio of 134 Cs to 137 Cs was close to $1.0^{3)}$. The 134 Cs concentration in the seawater six months after the accident was insignificant in comparison to the peak concentration—e.g. a $10^4 \sim 10^5$ -fold decrease at the FDNPP site³⁾. ¹³⁷Cs concentration in tissue may have reached equilibrium concentrations for a given concentration in seawater, so that the T_{eco} value became similar to the T_b determined from laboratory experiments.

For filter-feeding bivalves, phytoplankton is another source of ¹³⁷Cs uptake besides water. ¹³⁷Cs uptake in bivalves was caused largely by phytoplankton and this absorption from food sources led to a longer retention time⁷⁾. However, previous studies found a very low bioconcentration factor of phytoplankton (42 to 49)⁷⁾; significantly high turnover rates and a short T_b (ranging from 4.5 to 5.2 days)⁷⁾; and a low assimilation efficiency (ranging from 0.4 to 10%)⁹⁾, of ¹³⁷Cs in mussels. When the ¹³⁷Cs concentration in seawater drops drastically, as with the present case, T_{eco} appears to be as short as T_b offshore of the Fukushima Prefecture. The ¹³⁷Cs concentration in tissue of the Sakhalin surf clam may also have reached equilibrium concentrations concentration in for а given seawater. the ¹³⁷Cs phytoplankton and Thus, concentration in seawater seems to be the apparent driving force in the ¹³⁷Cs uptake in seaweed and bivalves.

On the other hand, T_{eco} was much longer than T_b for demersal fish, with a T_{eco}/T_b ratio ranging from 6.7 to 8.5^{6} . The result may be attributed to the excessively high assimilation rate (ranging from 78 to 95%)¹⁰⁾, and food habits¹¹⁾. The ¹³⁷Cs uptake from surrounding water was directly proportional to the concentration in the water. If ¹³⁷Cs competes with coexisting elements such as K⁺ for the uptake routes, the uptake rate should also relate to the concentration of K^+ . Therefore, the K^+ active transport channel is not likely used for ¹³⁷Cs uptake and dietary uptake is the main process in marine fish¹⁰⁾. There is strong correlation between food habit (trophic levels) and concentrations of ¹³⁷Cs in marine fish. As trophic levels increase, ¹³⁷Cs concentrations in prey increase, which leads to a higher intake rate for predators. In addition, fish at a higher trophic level have a relatively slow elimination rate¹¹⁾. Consequently, the longer biological retention time of ¹³⁷Cs in prey leads to a longer ¹³⁷Cs intake period and subsequently longer T_{eco} among predatory fish, including benthic fish.

It is important to note that our 535 day sampling period may not be sufficient to determine T_{eco} for all the marine life, possibly resulting in the low correlations between time and ¹³⁷Cs concentration for some of the predatory fish in the present study. After the Chernobyl accident, a time lag of one to two years was observed between the peak concentration of ¹³⁷Cs in seawater and in fish (Japanese sea perch and cod); the concentration in seawater had decreased to the original level after half a year¹²⁾. It was found that T_b of ¹³⁷Cs was longer in larger, or adult fish, due to a rate of food consumption exceeding the elimination rate (per kg-body weight), with some variations among different fish species¹¹. These factors may lead to a longer time lag for predatory fish. In addition, the contamination degree and Teco of migratory fishes may not represent the

studied biota, depending season and migratory area. Limited sampling period possibly shades the irregularity and accurate estimiates. Thus, in order to determine representative T_{eco} , long-term field data are indispensable.

4. Conclusions

Overall, marine life had higher ¹³⁷Cs contaminations in the southern area (with respect to the FDNPP site) than in the northern area. This result corresponds to the ¹³⁷Cs dispersion trend found in previous studies. T_{eco} values of common marine species in the south and the north tend to remain in the same range despite regional differences in the ¹³⁷Cs contamination. T_{eco} corresponds to T_b for some seaweeds and bivalves. Conversely, T_{eco} was considerably longer than T_b among benthic fish. In the present study, T_{eco} of predatory fish tended to have low correlations, possibly due to the sampling period available to-date since the accident.

As it likely to take longer to reach peak concentrations of ¹³⁷Cs in larger fish, it is important to obtain data for longer sampling periods. Consequently, to understand the dynamics of ¹³⁷Cs at the ecosystem level, and to quantify the rate of loss of ¹³⁷Cs in the spectrum of marine biota that are important in the human diet, continued field data analysis is imperative.

Acknowledgements

We thank Dr. E. R. Landa (U.S. Geological Survey) for his valuable comments. This work was partially supported by the Agency for Natural Resources and Energy of the Ministry of Economy, Trade and Industry (METI), Japan.

Type of marine species	Species	Parameter type	Half-life (days)	Ratio (T _{eco} / T _b)	Ref.
Seaweed	Arame (Eisenia*)	T _{eco}	50	0.93	This study
	Bladder wrack (Fucus*)	T _b	54		(6)
Shellfish (Bivalves)	Sakhalin surf clam	T _{eco}	85	1.13	This study
	Scallop	T _b	75		(7)
Demersal fish	Marbled sole (south)**	T _{eco}	555	8.54	This study
	Marbled sole (north)**	T _{eco}	438	6.73	This study
	Plaice**	T _b	65		(6)

Table 3 Comparison of field data (ecological half-life) and laboratory data (biological half-life)

*Genus of brown algae

**Belongs to Genus Pleuronectes

References

- Nuclear Emergency Response Headquarters, Government of Japan (NERH), "Report of the Japanese Government to the IAEA Ministerial Conference on nuclear safety—the accident at TEPCO's Fukushima Nuclear Power Stations," NERH, 2011.
- Tsumune D, Tsubono T, et al., "Distribution of oceanic ¹³⁷Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model," *J. Environ. Radioactiv.*, **111**, 100-108, 2012.
- Aoyama M, Tsumune D, et al., "Temporal variation of ¹³⁴Cs and ¹³⁷Cs activities in surface water at stations along the coastline near the Fukushima Daiichi Nuclear Power Plant accident site, Japan," *Geochem. J.*, **46**: 321-325, 2012.
- Buesseler KO, Jayne SR, et al., "Fukushima-derived radionuclides in the ocean and biota off Japan," *Proceedings of the National Academy of Sciences of the United States of America*, 109, 5984-5988, 2012.
- Food monitoring based on Emergency monitoring inspections published by Fukushima Prefecture. Fukushima Prefecture web sites [online]. Available at: http://www.new-fukushima.jp/monitoring/en/.

Accessed 25 October 2012.

- Vives i Batlle J, Wilson RC, et al., "Allometric methodology for the calculation of biokinetic parameters for marine biota," *Sci. Total Environ.*, 388, 256-269, 2007.
- Nakahara M, Nakamura R, et al., Accumulation and excretion of radionuclides by scallop, "Final Report on the Project Research "Assessment of Human Exposure to Environmental Radiation," NIRS-R-17, NIRS, 1989.
- Gutknecht J, "Uptake and retention of cesium 137 and zinc 65 by seaweeds," *Limnol. Oceanogr.*, 10, 58-66, 1965.
- Wang W-X, Ke C, et al., "Modeling radiocesium bioaccumulation in a marine food chain," *Mar. Ecol-Prog. Ser.*, 208, 41-50, 2000.
- Zhao X, Wang W-X, et al., "Biomagnification of radiocesium in a marine piscivorous fish," *Mar. Ecol-Prog. Ser.*, 222, 227-237, 2001.
- Kasamatsu F, "Marine organisms and radionuclides—with special reference to the factors affecting concentration of ¹³⁷Cs in marine fish," *Radioisotopes*, 48, 266-282, 1999.
- 12) Kusakabe M, "Behaviors of radionuclides in the ocean," *Atomos*, **53** (11), 755-759, 2011.