Beam Instrumentation and Diagnostics

Hidehiko Arima Kyushu University

2018/09/08 FFA'18 School KURNS, OSAKA

References, Resources

<u>Books</u>

P. Strehl; Beam Instrumentation and Diagnostics, Springer 2006.

- M.G. Minty; *Measurement and Control of Charged Particle Beams*, Spriger 2003.
- A. Chao; Handbook of Accelerator Physics and Engineering, World Scientific 2013.

Lectures on Particle Acceletors

CERN Accelerator School (CAS) http://cas.web.cern.ch

Joint Universities Accelerator School (JUAS) https://indico.cern.ch/category/3833/

US Particle Accelerator School (USPAS) http://uspas.fnal.gov/index.shtml

KEK Accelerator Seminar (OHO) http://accwww2.kek.jp/oho/index.html

Typical beam parameters and instruments (1/2)

Beam parameters		Instuments	
		LINAC & transfer line	Synchrotron
Current I	General	Transformer, dc & ac	Transformer, dc & ac
	Special	Faraday Cup	Diale un Signal (nalativa)
	special	Fatucie Delectors	rick-up Signai (relative)
Profile <i>x_{width}</i>	General	Screens, SEM-Grids	Residual Gas Monitor
		Wire Scanners, OTR Screen	Wire Scanner,
			Synchrotron Light Monitor
	Special	MWPC, Fluorescence Light	
Position <i>x_{cm}</i>	General	Pick-up	Pick-up
	Special	Using position measurement	
Transverse Emittance ε_{trans}	General	Slit-grid	Residual Gas Monitor
		Quadrupole Variation	Wire Scanner
	Special	Pepper-Pot	Transverse Schottky

P. Forck, CAS2013

Typical beam parameters and Instruments (2/2)

Beam parameters		Instruments	
		LINAC & transfer line	Synchrotron
Bunch Length $\Delta \phi$	General	Pick-up	Pick-up
	Special	Secondary electrons	Wall Current Monitor
	speciai	Secondary electrons	Electro-optical laser mod.
Momentum <i>p</i> and	General	Pick-up (Time-of-Flight)	Pick-up (e.g. tomography)
Momentum Spread <i>∆p/p</i>	Special	Magnetic Spectrometer	Schottky Noise Spectrum
Longitudinal Emittance	General	Buncher variation	
E _{long}	Special	Magnetic Spectrometer	Pick-up & tomography
Tune and Chromaticity Q, ξ	General		Exciter + Pick-up
	Special		Transverse Schottky Spectrum
Beam Loss r _{loss}	General	Particle Detectors	
		(Ionization chambers, PIN diodes, Optical fibers)	
Polarization P	General	Particle Detectors	
	Special	Laser Scattering (Compton scattering)	
Luminocity L	General	Particle Detectors	

• Destructive and non-destructive devices depending on the beam parameters

• Different techniques for the same parameters <--> Same techniques for the different parameters

P.Forck CAS2013

Beam intensity monitor

Passive Transformer (Fast Current Transformer : FCT)

Simplified electrical circuit of a passively loaded transformer:

passive transformer

H.Koziol CAS

A voltages is measured: $U = R \cdot I_{sec} = R / N \cdot I_{beam} \equiv S \cdot I_{beam}$

with S sensitivity [V/A], equivalent to transfer function or transfer impedance Z

Active Transformer with long droop time

Active Transformer or Alternating Current Transformer ACT:

uses a trans-impedance amplifier (I/U converter) to $R \approx 0 \Omega$ load impedance i.e. a current sink

+ compensation feedback

 \Rightarrow longer droop time τ_{droop} and rise time τ_{rise}

Application: measurement of longer $t > 10 \mu s e.g.$ at pulsed LINACs

The input resistor is for an op-amp: $R_f/A \ll R_L$

$$\Rightarrow \tau_{droop} = L/(R_f/A + R_L) \simeq L/R_L$$

Droop time constant can be up to 1 s!

The feedback resistor is also used for range switching.

An additional active feedback loop is used to compensate the droop.

P.Forck JUAS

DC beam Current Transformers (DCCT)

K.Uncer(CERN1969)~

- DC current dB/dt = 0 ⇒ no voltage induced
- Use two identical toroids
- Take advantage of non-linear magnetisation curve
- Modulation of opposite sign drives toroids into saturation
- Sense windings measure the modulation signal
 - Signals from the two toroids cancel each other as long as there is no beam

> But with the I_{beam} , the saturation is shifted and I_{sense} is not zero

Compensation current adjustable

until I_{sense} is zero once again

Faraday Cups

The beam particles are collected inside a metal cup The beam's charge are recorded as a function of time.

Currents down to 10 pA with bandwidth of 100 Hz! To prevent for secondary electrons leaving the cup Magnetic field and/or Electric field for potential barrier at the cup entrance

GSI Faraday cup

Faraday Cups : repelling voltage

In order to keep secondary electrons with the cup a repelling voltage is applied to the polarization electrode

Since the electrons have energies of less than 20 eV some 100V repelling voltage is sufficient With increasing repelling voltage the electrons do not escape the Faraday Cup any more and the current measured stays stable.

At 40V and above no decrease in the Cup current is observed any more

Beam position monitor

Electrostatic Position Monitor – The Principle

Pick-up position monitor with triangular electrodes

"Shoebox" pick-up monitor

Linear cut through a shoebox

Advantage: Very linear, low frequency dependencei.e. position sensitivity S is constantDisadvantage: Large size, complex mechanics

Usage: proton synchrotron frf < 10MHz

Calibration is required before installing.

Simulatenous horizontal and vertical measurement

- · Horizontal and vertical position at once
- 4 electrodes

Linear-cut BPM in cylindrical geometry

Wounded strip geometry

Button pick-up BPM

calibration map after correction

Button BPM – example for synchrotron light sources

The button BPM can be rotated by 45⁰ to avoid exposure by synchrotron light:

Frequently used at boosters for light sources

horizontal:
$$x = \frac{1}{S} \cdot \frac{(U_1 + U_4) - (U_2 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

vertical: $y = \frac{1}{S} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$

Example: Booster of ALS, Berkeley

P. Forck, CAS2017

Today's State of the Art BPMs

Prototype BPM for ILC Final Focus

- Required resolution of 2nm (nano!) in a 6×12mm diameter beam pipe
- Achieved World Record (so far!) resolution of 8.7nm at ATF2 (KEK, Japan)

Beam profile monitor

Secondary Electron eMission (SEM) Grids

- When the beam passes through, secondary electrons are emitted from a wire, proportional to beam intensity
- The current flowing back onto the wires is measured using one amplifier/ADC chain for each wire
- Very high sensitivity, semi-transparent
- Good absolute measurement
- Spatial resolution limited by wire spacing to <≈ 0.25mm
- Dynamic range: ≈ 10⁶

E. Holzer CAS2012

Scintillation screens

• Typically for setting-up with low intensities, screen thickness (mm)

•Sensitivities of different materials vary by orders of magnitudes

Properties of inorganic scintillators

Abbreviation	Material	Activator	max. emission	decay time
Quartz	SiO_2	none	470 nm	< 10 ns
	CsI	Tl	$550 \ \mathrm{nm}$	$1 \ \mu s$
Chromolux	Al_2O_3	Cr	700 nm	$100 \mathrm{\ ms}$
YAG	$Y_3Al_5O_{12}$	\mathbf{Ce}	$550 \ \mathrm{nm}$	$0.2 \ \mu s$
	Li glass	\mathbf{Ce}	400 nm	$0.1 \ \mu s$
P11	ZnS	Ag	450 nm	$3 \mathrm{ms}$
P43	$\mathrm{Gd}_2\mathrm{O}_2\mathrm{S}$	Tb	545 nm	$1 \mathrm{ms}$
P46	$Y_3Al_5O_{12}$	\mathbf{Ce}	530 nm	$0.3~\mu{ m s}$
P47	$Y_2Si_5O_5$	Ce&Tb	400 nm	100 ns

Optical Transmission Radiation (OTR) screens

- Radiation emitted when a charged particle beam goes through the interface of two media with different dielectric constants
- Surface phenomenon allows the use of very thin screens (~10μm)
- much less intercepting, but requires higher intensity

for electron accelerators

Wire scanners

The wires are connected on a frame with 45deg, if the frame is installed with 45deg against the horizontal axis, both horizontal and vertical profiles can be measured in a stroke.

Wire scanners

Gas sheet BPM

non-destructive

Profile images of HIMAC C6+ beam

Transverse emittance measurement

 Converting the angles into position through a drift space allows to reconstruct the angular distribution at the position defined by the slit.

slit

• If for each beam particle we plot its position and its transverse angle we get a particle distribution who's boundary is an usually ellipse.

• The projection onto the x axis is the beam size.

Double-Slit emittance measurement

Slit: position *P(x)* with typical width: 0.1 to 0.5 mm *Distance:* 10 cm to 1 m (depending on beam velocity) *SEM-Grid:* angle distribution *P(x')*

Pepper-pot emittance measurement

P.Forck, JUAS 2017

 $+ 2L(1 - KL)\sigma_{12} + L^2\sigma_{22}$

 $\sigma_{11}(K,L) = (1-KL)^2 \sigma_{11}$

0

-10

0.5

0.7

0.6

0.8

H.Sakai OHO2002

K-value

0.9

Wall Current Monitor – The Principle

Wall current monitors

When the beam is not at the centre of the vacuum chamber, the wall-current will be unequally distributed around the circumference of the chamber. The signals are picked-up separatedly \rightarrow Beam position monitoring

Stripline pick-ups ~ bunch monitor

Beam loss monitors

Beam Loss

Role of beam loss monitor :

- Protect the machine from damage and activation
- Dump the beam to avoid magnet quenches (for superconducting magnets)
- Diagnostic tool to improve the performance of the accelerator

SPS incident

- June 2008
- 2MJ beam lost at 400MeV

Beam Loss Monitors (BLM) - Ionization chambers

Ionization chambers (charge detection)

- Dynamic range of $< 10^8$
- Slow response (μ s) due to ion drift time

LHC BLM system

- Main purpose: prevent damage and quench
- 3600 Ionization chambers
- reaction time : $\sim 100 \mu s$
- radiation hard : ~ kGy

Beam Loss Monitors

PIN photodiode (solid state ionisation chamber)

Count detection

Detect coincidence of ionising particle crossing photodiodes Insensitive to photons from synchrotorn radiation Count rate proportional to beam loss with speed limited by integration time

Can distinguish between photon & ionising particles Dynamic range of up to 10⁹

Diamond Detectors

- •Fast & sensitive
- •Used in LHC to distinguish
- bunch by bunch losses
- •Work in cryogenic conditions

Beam Loss Monitors

Long ionization chamber (charge detection)

- Up to several km of gas filled hollow coaxial cables
- Position sensitivity achieved by comparing direct & reflected pulse
- SLAC 8m position resolution (30ns) over 3.5km cable length

Fiber optic monitors

• Electrical signals replaced by light produced through Cerenkov effect

Tune, Chromaticity, Momentum

Characteristic Frequency of the Magnetic Lattice Given by the strength of the Quadrupole magnets

• Parameters

Tune

- Q : Full betatron tune
- n : Integer tune
- q : Fractional tune (Q=n+q)
- horizontal, vertical

Tune measurement – principle

A stimulus is needed to globally excite the beam.

- Resulting betatron oscillations observed on a position pick-up
- Time domain signals usually converted to frequency domain
 - Displays which frequencies are present in the oscillations

Tune measurement – principle

- Observable is typically turn-by-turn position from a BPM
- BPM electrode signal has temporal shape related to the temporal structure (intensity profile) of the passing beam

Tune measurement

Induced voltage (pulse height) each turn depends on **path length of electrode** by the betatron oscillations. Induced voltage (pulse height) each turn depends on **distance between beam-electrode** by the betatron oscillations.

Measured voltage from monitor

$$V_{\text{moni}} = \sum_{m} A \left\{ 1 + A_b \cos(2\pi f_b t + \theta) \right\} \cdot \delta \left(t - \frac{m}{f_{\text{rev}}} \right)$$

$$\underline{\text{tune}} \quad \mathbf{v} = \frac{f_b}{f_{rev}} = n + c$$

$$V_{\text{moni}} = \sum_{m} A \left\{ 1 + A_b \cos(2\pi (n+c)f_{\text{rev}}t + \theta) \right\} \cdot \delta \left(t - \frac{m}{f_{\text{rev}}} \right)$$

$$= \sum_{m} A \left\{ 1 + A_b \cos(2\pi c f_{\text{rev}}t + \theta) \cos(2\pi n f_{\text{rev}}t) \right\} \cdot \delta \left(t - \frac{m}{f_{\text{rev}}} \right)$$

$$= \sum_{m} A \left\{ 1 + A_b \cos(2\pi c f_{\text{rev}}t + \theta) \sin(2\pi n f_{\text{rev}}t) \right\} \cdot \delta \left(t - \frac{m}{f_{\text{rev}}} \right)$$

n : integer tune *C* : fractional part of tune f_{rev} : revolution frequency f_{side} : sideband frequency *m* : order of harmonic

$$V_{\text{moni}} = \sum_{m} A f_{\text{rev}} \left[\cos(2\pi m f_{\text{rev}} t) + \frac{A_b}{2} \cos\left\{2\pi (m+c) f_{\text{rev}} t + \theta\right\} \right]$$
$$c = \frac{|f_{side} - m f_{rev}|}{m f_{rev}}$$

Tune measurement by FFT analysis (example)

example: Kyushu FFAG, 10MeV proton beam

$$\nu = \frac{f_b}{f_{rev}} = n + c$$
$$c = \frac{|f_{side} - mf_{rev}|}{mf_{rev}}$$

n : integer tune *C* : fractional part of tune f_{rev} : revolution frequency f_{side} : sideband frequency *m* : order of harmonic

 ν in holiz. & vert. --> "tune diagram"

Chromaticity

Spread in the Machine Tune due to Particle Energy Spread

(Relative increase in tune for an off-momentum particle)

Chromaticity
$$\xi$$
 $Q' = \xi Q$
tune change $\Delta Q = Q' \frac{\Delta p}{p}$ $\xi = \frac{\frac{\Delta Q}{Q}}{\frac{\Delta p}{p}}$ <-- momentum change

- Measure tune for slightly different beam energies (by varying RF frequency and keeping magnetic field constant and calculate the gradient.
- Correct with sextupole magnets.
- Chromaticity can be tracked continuously by combining RF modulation with PLL tune measurement.

Chromaticity Measurement Many techniques available to measure chromaticity

Tune change for different beam momenta	Standard method used on all machines. Can be combined with PLL tune tracking to give on- line measurement
Width of tune peak or damping time	Model dependent, non-linear effects, not compatible with active transverse damping
Amplitude ratio of synchrotron sidebands	Difficult to exploit in hadron machines with low synchrotron tune, Influence of collective effects
Width ratio of Schottky sidebands	Used on many machines & ideally suited to unbunched or ion beams. Measurement is typically very slow
Bunch spectrum variations during betatron oscillations	Difficult to disentangle effects from all other sources – e.g. bunch filling patterns, pick-up & electronics response
Head-tail phase advance	Good results on several machines but requires kick stimulus \Rightarrow emittance growth!

Chromaticity measurement in the LHC (Q' tracker)

Modulates the RF frequency to give $\Delta p/p$ of 10^{-4} @ 2Hz Measures the effect on the tune & demodulates the sinusoidal variation Resolution of 1-2 units achieved with results fed-forward for next ramp

Test showing effect of RF modulation on tune in presence of chromaticity

$$Q' = \frac{\Delta Q}{\Delta p/p}$$
 measured tune change
RF induced momentum change

$$\xi = \frac{Q'}{Q}$$

in the LHC during start of acceleration

R. Jones, CAS2014

Momentum measurement

- In linacs and transferlines the momentum and momentum spread are mainly measured by spectrometer systems. $p_{\scriptscriptstyle RIIIF} < p_0$
- The beam enters in the field of a dipole magnet where particles with different momenta follows different trajectories.
- The particle position is then measured on a detector downstream the magnet.

Detector

 $p_{RED} > p_0$

Bend

 The spectrometer resolution is limited by the intrinsic beam size at the detector plane and by field non-linearities.

Momentum measurement

 β_x is minimized before passing though bending magnet using Q-magnet. Beam size is measured at point where β_x is minimum.

Overview of typical beam parameters and diagnostic instruments

Beam quantity		LINAC, transfer line	Synchrotron
current I	general	transformer (dc, pulsed)	transformer (dc)
		Faraday cup	
	special	particle detector	normalized pick-up signal
		(Scint. IC, SEM)	
position \overline{x}	general	pick-up	pick-up
	special	using profile measurement	cavity excitation (e^{-})
profile x_{width}	general	SEM-grid, wire scanner	residual gas monitor
		viewing screen, OTR-screen	synch. radiation (e^{-})
			wire scanner
	special	grid with ampl. (MWPC)	
trans. emittance	general	slit grid	residual gas monitor
ϵ_{trans}		quadrupole scan	wire scanner
	special	pepper-pot	transverse Schottky pick-up
			wire scanner
momentum	general	pick-up (TOF)	pick-up
$p \text{ and } \Delta p/p$		magn. spectrometer	
	special		Schottky noise pick-up
bunch width $\Delta \varphi$	general	pick-up	pick-up
			wall current monitor
	special	particle detector	streak camera (e^{-})
		secondary electrons	
long. emittance	general	magn. spectrometer	
ϵ_{long}		buncher scan	
	special	TOF application	pick-up + tomography
tune, chromaticity	general	—	exciter + pick-up (BTF)
Q, ξ	special		transverse Schottky pick-up
beam loss r_{loss}	general	particle detector	
polarization P	general	particle detector	
	special	Compton scattering with laser	
luminosity \mathcal{L}	general	particle detector	