Betatron tune Measurement

Tom UESUGI, Y. Kuriyama, Y. Ishi Kurns

FFA school, Sep. 8-9, Osaka, 2018

CONTENTS

Betatron oscillation and tune

How to measure tunes

KURNS FFAG, Diagnostics

BETATRON OSCILLATION AND TUNE

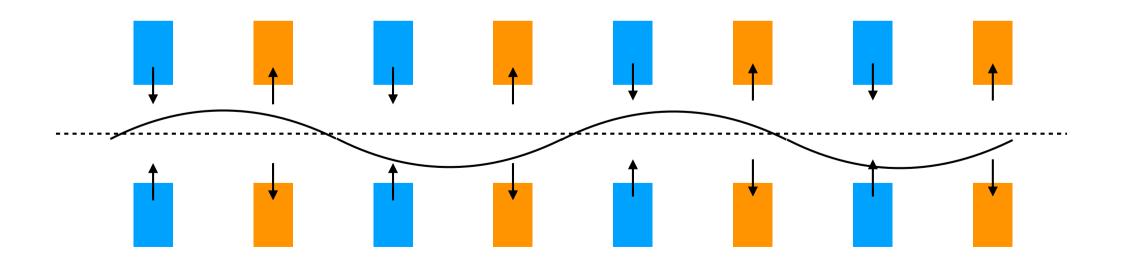
You know what is betatron oscillation

A particle in a circular accelerator affects focusing forces by gradient field,

and oscillates in transverse directions at closed orbit. = betatron oscillation

Its frequency depends on field gradient.

Horizontal (f_x) and vertical (f_y) frequencies are different, in general.



Betatron tunes

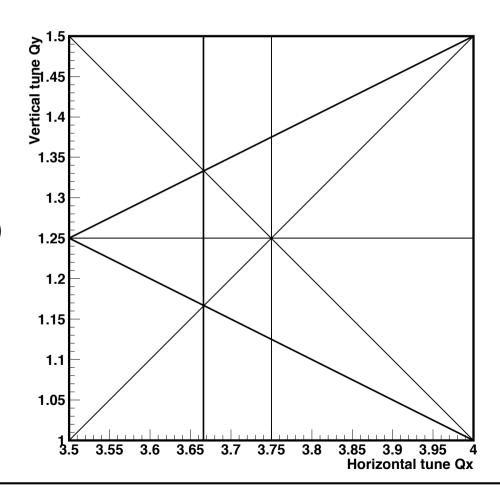
are the frequencies of the betatron oscillations, divided by the revolution frequency.

$$(Q_x, Q_y) = \left(\frac{f_x}{f_{rev}}, \frac{f_y}{f_{rev}}\right)$$

It is very important parameters in a circular accelerator.

Beams tend to be lost if the tunes satisfy the *resonance condition*;

$$\ell Q_x + mQ_y = n$$
 $(\ell, m, n = \text{small integers})$



HOW TO MEASURE TUNES

keywords

Beam position monitor Coherent betatron oscillations Spectrum with betatron sidebands

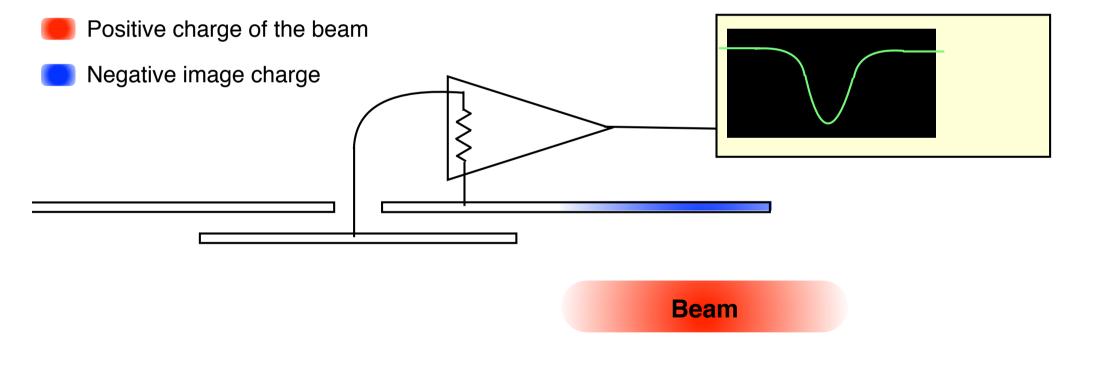
Electro-static beam position monitor

is composed of a electrode installed in the vacuum chamber.

When a charged particle beam pass through,

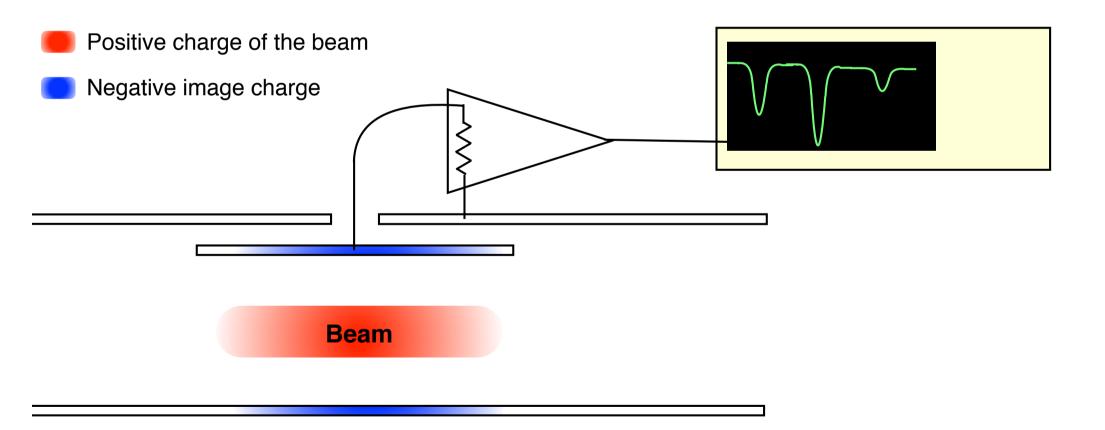
longitudinal charge distribution can be detected.

... Bunch monitor

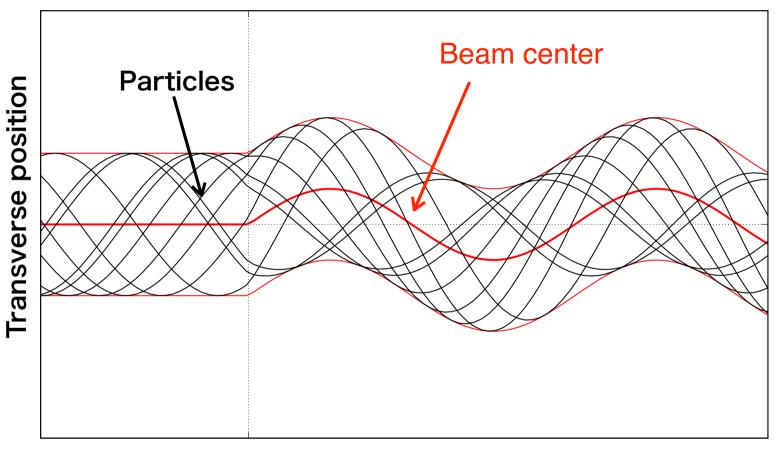


Electro-static beam position monitor

is sensitive to the beam center position.



Coherent oscillations are necessary to measure the frequency by BPM



Turn number

BPM can detect only the position of beam center.

It needs to excite coherent oscillations to observe the betatron oscillation.

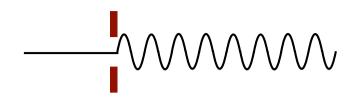
How to excite coherent oscillations

(1) Strong pulse kick

Coherent oscillations can be observed, if the kick angle is large enough.

$$x_{amplitude} \simeq \beta \, \Delta x' = \beta \, rac{q \cdot B \ell}{p} = \beta \, rac{B \ell}{0.48 \, [T \cdot m]}$$
 (11 MeV proton)

In KURNS FFAG, extraction kicker is available, only around the extraction orbit.



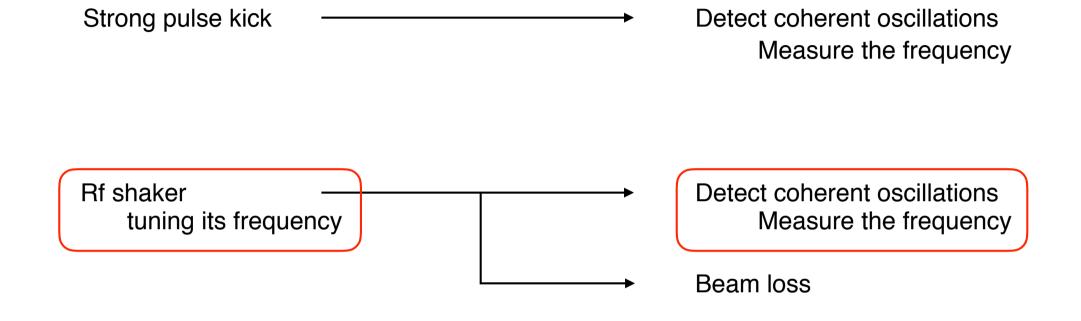
$$=eta \, rac{B\ell}{0.48 \; [T \cdot m]}$$
 (11 MeV proton) $=eta \, rac{B\ell}{1.48 \; [T \cdot m]}$ (100 MeV proton)

(2) Rf shaker

Applies transverse field for long duration time.

Amplitude of coherent oscillations are resonantly grow up,

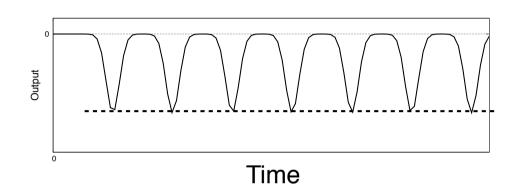
if the shaker frequency is close to the betatron frequency.



Signal from Beam Position Monitor

Signal from Beam Position Monitor

Short bunch approximation

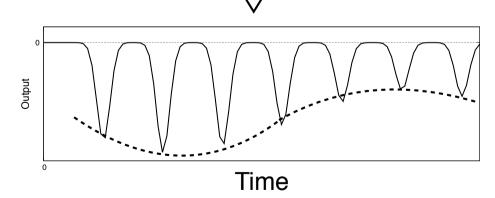


$$V(t) = \sum_{n=0}^{\infty} V_0 \,\delta(t - nT_0)$$

 T_0 Revolution time

 V_0 Proportional to beam intensity

In presence of coherent betatron oscillations



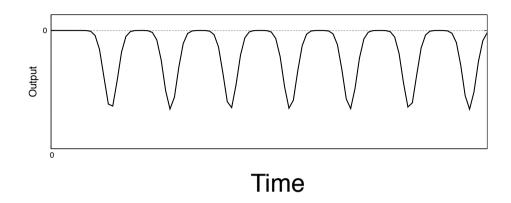
$$V(t) = \sum_{n=0}^{\infty} (V_0 + \Delta V \cos \omega_{\beta} t) \, \delta(t - nT_0)$$

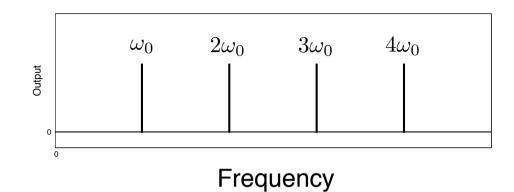
AM factor

 ΔV Betatron amplitude

 ω_{β} Betatron (angular) frequency

Spectrum





$$V(t) = \sum_{n=0}^{\infty} V_0 \,\delta(t - nT_0)$$

 T_0 Revolution time

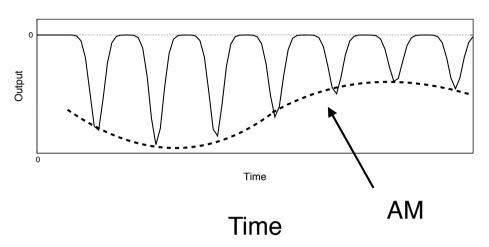
 V_0 Proportional to beam intensity

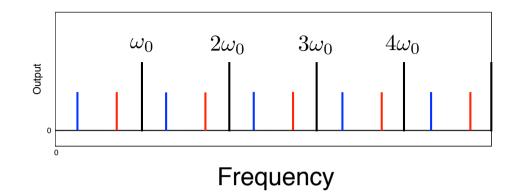
$$\tilde{V}(\omega) = \int \sum_{n=0}^{\infty} V_0 \, \delta(t - nT_0) \exp(i\omega t) \, dt$$

$$= V_0 \sum_{m=-\infty}^{\infty} \exp(im\omega T_0)$$

$$= \omega_0 V_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$$

Spectrum (with betatron oscillation)





 ΔV Betatron amplitude

 ω_{β} Betatron (angular) frequency

 T_0 Revolution time

 V_0 Proportional to beam intensity

$$\omega_0 = \frac{2\pi}{T_0}$$

$$V(t) = \sum_{n=0}^{\infty} (V_0 + \Delta V \cos \omega_{\beta} t) \, \delta(t - nT_0)$$

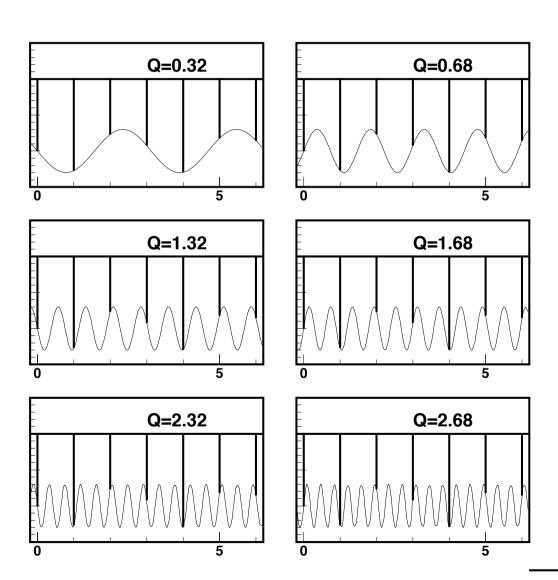
$$\tilde{V}(\omega) = \int \sum_{n=0}^{\infty} (V_0 + \Delta V \cos \omega_{\beta} t) \, \delta(t - nT_0) \exp(i\omega t) \, dt$$

$$= \omega_0 V_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0) + \frac{\Delta V}{2} \sum_{m=-\infty}^{\infty} \left(e^{im(\omega + \omega_\beta)t} + e^{im(\omega - \omega_\beta)t} \right)$$

$$= \omega_0 V_0 \sum_{n=-\infty}^{\infty} \left[\delta(\omega - n\omega_0) + \frac{\omega_0 \Delta V}{2} \sum_{m=-\infty}^{\infty} \left(\left[\delta[\omega - (m\omega_0 - \omega_\beta)] + \left[\delta[\omega - (m\omega_0 + \omega_\beta)] \right] \right) \right]$$

Ambiguity of measured tune

$$\omega_0 V_0 \sum_{n=-\infty}^{\infty} \underbrace{\delta(\omega - n\omega_0)} + \frac{\omega_0 \Delta V}{2} \sum_{m=-\infty}^{\infty} \left(\underbrace{\delta[\omega - (m\omega_0 - \omega_\beta)]} + \underbrace{\delta[\omega - (m\omega_0 + \omega_\beta)]} \right)$$



$$\omega = \begin{cases} m\omega_0 \\ m\omega_0 + \omega_\beta &= \omega_0(m+Q) \\ m\omega_0 - \omega_\beta &= \omega_0(m-Q) \end{cases}$$

$$m = 0 , \pm 1 , \pm 2 , \pm 3 , \cdots$$

Signal are the same for these Q values

You must choose one of them, knowing designed tune value.

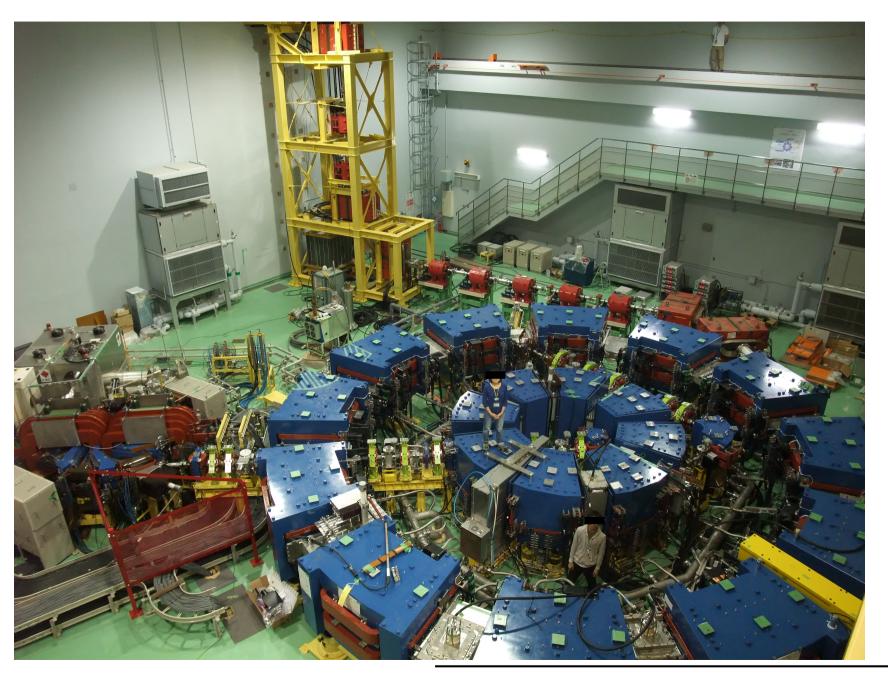
KURNS FFAG, DIAGNOSTICS

keywords

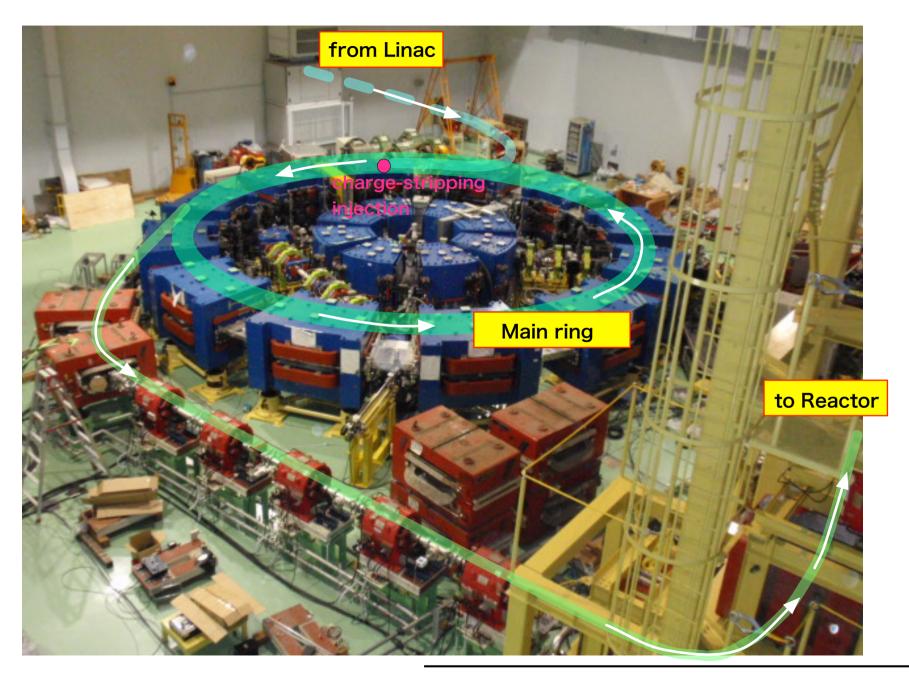
Beam position monitor Rf shaker

Frequency, Amplitude, Waveform

KURNS FFAG Main Ring



KURNS FFAG Main Ring



Main Parameters

Particle Proton (H- beams are injected)

Cell Scaling FFAG, Radial DFD x 12, k=7.6

Orbit radius 4.6 - 5.3 m

Revolution 1. 6 - 4.3 MHz

Designed tune \sim (3.7, 1.4)

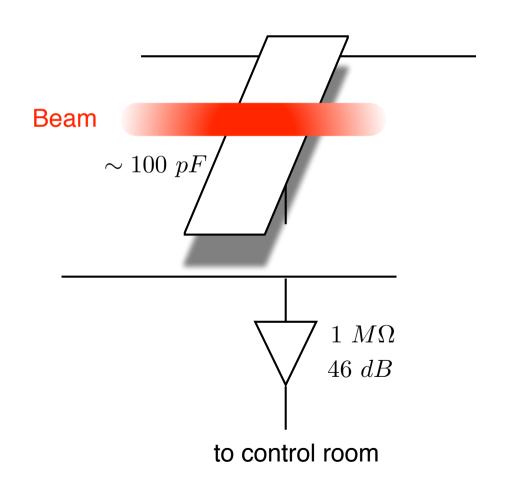
BPM in KURNS FFAG

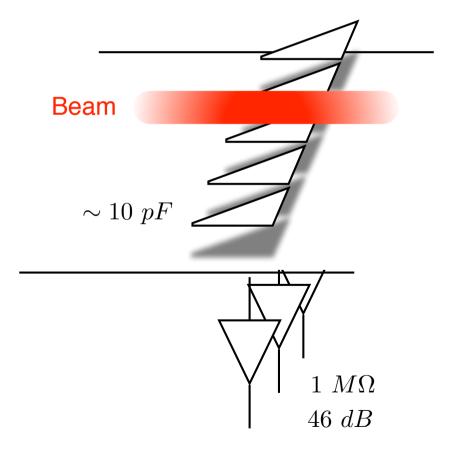
for vertical position pickup

for horizontal position pickup

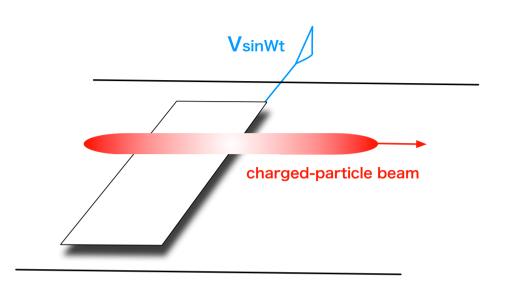
Wide electrode

Triangular electrodes



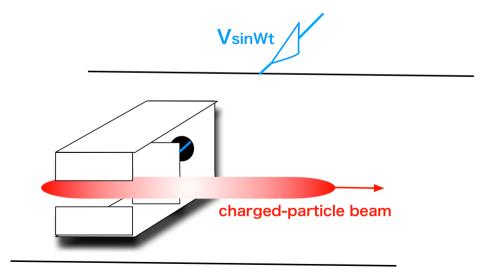


Shaker in KURNS FFAG



for Vertical excitation

Same as the vertical BPM



for Horizontal excitation

Remote controlled in horizontal direction

Positions of the monitors and shakers

