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The rf frequency is multiple of 
the revolution frequency of  a beam, 

so that an accelerated particle sees the same rf phase.

frf = h · fs = h · speed

circumference

is a device to produce (sinusoidal) electric field.

t

c

⇡ ⇥ 10 m
' 10 MHz

trf

particle revolution time (h = 2)



Role of the rf

Tom UESUGI, FFA SCHOOL, Osaka, Sep, 2018

to accelerate a beam.



Maximum particle energy becomes twice
if rf voltage is twice higher ?  

Role of the rf

Tom UESUGI, FFA SCHOOL, Osaka, Sep, 2018

to accelerate a beam.



Maximum particle energy becomes twice
if rf voltage is twice higher ?  

Role of the rf

Tom UESUGI, FFA SCHOOL, Osaka, Sep, 2018

to accelerate a beam.



Maximum particle energy becomes twice
if rf voltage is twice higher ?  

Role of the rf

Tom UESUGI, FFA SCHOOL, Osaka, Sep, 2018

to accelerate a beam.

to focus particle at a certain energy, 
at which the revolution is synchronized with rf.  



Maximum particle energy becomes twice
if rf voltage is twice higher ?  

Role of the rf

Tom UESUGI, FFA SCHOOL, Osaka, Sep, 2018

to accelerate a beam.

to focus particle at a certain energy, 
at which the revolution is synchronized with rf.  

V (t) sin

✓Z
!(t) dt

◆ Frequency synchronous energy



Maximum particle energy becomes twice
if rf voltage is twice higher ?  

Role of the rf

Tom UESUGI, FFA SCHOOL, Osaka, Sep, 2018

to accelerate a beam.

to focus particle at a certain energy, 
at which the revolution is synchronized with rf.  

V (t) sin

✓Z
!(t) dt

◆

Amplitude 

Frequency synchronous energy

stability



Maximum particle energy becomes twice
if rf voltage is twice higher ?  

Role of the rf

Tom UESUGI, FFA SCHOOL, Osaka, Sep, 2018

to accelerate a beam.

to focus particle at a certain energy, 
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to accelerate a beam.

to focus particle at a certain energy, 

Principle of stable rf acceleration
(1) Revolution time of  a particle depends on its energy
(2) Energy gain at rf depends on arrival time

Particles are accelerated when rf frequency is varied smoothly.  

at which the revolution is synchronized with rf.  
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Frequency synchronous energy

stability

Let us play with a simulation game, later.
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depends on momentum and magnetic field.

varies with time    in a conventional synchrotron.
constant of time   in a FFAG.

Conventional synchrotron

FFAG
Magnetic field is constant.
        can be globally defined independent of time.T (p)

T =
C

v

C : Circumference
v : Velocity

            is defined at each instant, 
for a momentum around                .
T (p, t)

p ' ps(t)

T (ps + dp) = T (ps) + ⌘
dp

ps
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Once rf frequency is determined, 
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m = 938 MeV ↵p =
1

7.6 + 1
f = 1591.84 MHz at Ek = 11.57 MeV

1.mrng.py
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If the injected beam is mismatched in phase space, then…

Emittance growth caused by filamentation is reduced    by adiabatic capture.

because of the nonlinearity

Filamentation

and emittance grows up.

Filamentation does not happen    with linear waveform ( Saw-tooth ) rf.
—> phase rotation
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Demonstration 3:  Rf acceleration

Tom UESUGI, FFA SCHOOL, Osaka, Sep, 2018
synchronous energy

m = 938 MeV ↵p =
1

7.6 + 1
f = 1591.84 MHz at Ek = 11.57 MeV

1. Deceleration is possible, too 
2. Try fast acceleration !
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�⇡ +⇡0

E
h · f(Es) = frf

Es

Rf frequency determines
the synchronous energy.

�s

or, the ramping rate of rf frequency.

��

�E

E = Es + �E

� = �s + ��

general particle

Equation of motion with respect to ( �� , �E )

Synchronous phase is determined by
the synchronous energy gain per turn, 

qV sin�s =
dEs

dN
=

1

f

dEs

dt

=
1

frf

1

(df/dEs)

dfrf
dt

offset ?

(�s, Es) is a stable fixed point
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TOPICS AROUND RF ACCELERATION
IN A FFAG

keywords

Stationary bucket, 
Harmonic number jump, 

Rf stacking
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Extreme case; 
Serpentine acceleration (next)
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H. Okita, “Beam study of MERIT FFAG”, in this workshop.
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if voltage is high enough and 
slippage is tuned well.

frf/2

frf = h · f(Es)

Let us recall
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because h can be any integer.
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Stable fixed point

There are many stable fixed points, 
corresponding to h=1,2,3,4,…
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Mixing two (or more) rf component with different frequencies, 
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Azimuthal position

Repetition rate becomes twice (or higher).

Frequencies must be separated enough
 each other, otherwise 
two rf interferes.

V (t) = V1 sin

✓Z
2⇡f1(t) dt

◆
+ V2 sin

✓Z
2⇡f2(t) dt

◆

A new beam is injected during acceleration. 

f1(t)

f2(t)
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