EDM実験に向けた高精度磁力計 に関して

吉見 彰洋 岡山大 極限量子研究コア

T. Inoue¹, T. Nanao¹, M. Chikamori¹, T. Furukawa²,
Y. Ichikawa¹, H. Hayashi¹, H. Miyatake¹, Y. Ishii¹,
N. Yoshida¹, H. Shirai¹ and K. Asahi¹ *1 Department of Physics, Tokyo Institute of Technology 2 Department of Physics, Tokyo Metropolitan University*

KUR workshop, 2012/2/26

Nuclear Spin Maser with Polarized ¹²⁹Xe at low field

Magnetic shield (4 layers) ϕ : 400 mm, L = 1600 mm for the outermost layer

Solenoid coil ϕ : 254 mm, L = 940 mm

Feedback coil

Pumping laser

Probe laser

Heater - tube

¹²⁹Xe gas cell

60000

Stabilization of B0-current source

Correction to environmental field fluctuation

Current fluctuation: 1 ppm

 $B0{=}30 \text{ mG} \rightarrow \quad \delta B = 30 \text{ nG}$

Outside the magnetic shield: $\delta B = 50-100 \ \mu G$

 \rightarrow inside the magnetic shield δB = 50-100 nG

Magnetometer for Low freq-Spin maser EDM experiment

- Not comagnetometer
- Rb magnetometer near maser cell
- Only Xe and Rb (small, and not pol)

 $\delta B = 10^{-11} \text{ G}/\sqrt{\text{Hz}}$ 100 s -run (if constant): $\delta B = 10^{-12} \text{ G}$

- Comagnetometer of Rb
- Only Xe and Rb (small, and not pol)
- Probrem of
- Rb Xe interaction ?
- (→ Low density Xe gas ?)
 Polarizability problem

 $\delta B = ? G/\sqrt{Hz}$

- Comagnetometer of 3He
- S/N for He precession for laser probing .

Precise magnetometer with Rb atoms using NMOR

Resonant optical rotation in Rb vapor (NMOR; Nonlinear Magneto-Optical Rotation)

(F=1)

 $|0\rangle = |m_F = 0\rangle$

PHYSICAL REVIEW A, VOLUME 62, 043403

Sensitive magnetometry based on nonlinear magneto-optical rotation

D. Budker,^{1,2,*} D. F. Kimball,¹ S. M. Rochester,¹ V. V. Yashchuk,¹ and M. Zolotorev³ ¹Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300 ²Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 ³Center for Beam Physics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Received 26 April 2000; published 11 September 2000)

Application of nonlinear magneto-optical (Faraday) rotation to magnetometry is investigated. Our experimental setup consists of a modulation polarimeter that measures rotation of the polarization plane of a laser beam resonant with transitions in Rb. Rb vapor is contained in an evacuated cell with antirelaxation coating

that enables atomic ground-state polarization to survive many thousan rrow features ($\sim 10^{-6}$ G) in the magnetic-field dependence of optical $\partial B \sim 10^{-12}$ G/ \sqrt{Hz} s scheme to sub- μ G magnetic fields as a function of atomic density, light intensity, and light frequency is investigated near the *D*1 and *D*2 lines of ⁸⁵Rb. It is shown that through an appropriate choice of parameters the shot-noise-limited sensitivity to small magnetic fields can reach 3×10^{-12} G/ \sqrt{Hz} .

$$\varphi = \frac{\frac{2g_F \mu_B B_z}{\mathcal{H}_0}}{1 + \left(\frac{2g_F \mu_B B_z}{\mathcal{H}_0}\right)^2} \frac{l}{2l_0}}{\delta B = \left(\frac{d\phi}{dB_z}\right)_{B=0}^{-1} \delta\phi}$$

$$\begin{array}{c} -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline & & & & & \\ & &$$

Larmor frequency $\Omega_{1}/(2\pi)$ (Hz)

Narrow line width (reducing spin relaxation) Operation at room temperature Operation at geophysical field range (mG~G) (by using modulation of laser property)

NMOR setup

Setup, Rb cell

セットアップ移動: 理研→東工大 (Xe maser setup への インストール) ミラー台 セル台 セル部分 52 52 レーザー経路

NMOR spectrum

Dispersive function

$$\varphi = \frac{2g_F \mu_B B_z / \hbar}{1 + \left(\frac{2g_F \mu_B B_z / \hbar}{\gamma}\right)^2} \frac{l}{2l_0}$$

$$\gamma = 2\pi \times (6.43 \pm 0.03) \times 10^4 [\text{s}^{-1}]$$

$$\Delta t = 1.25 \times 10^{-5} \text{ s}$$
Laser light
Dreservation of atomic spin
coherence at wall-collision

$$Magnetic \text{ field}$$

$$Magnetic \text{ field}$$

$$I = 1.25 \times 10^{-1} = \frac{1}{1.65 \times 10^2 [\text{s}^{-1}]} = 6.1 [\text{ms}]$$

NMOR width (Cell dependence and residual field)

Magnetic sensitivity

NMOR spectrum

$$\delta B = \frac{7.5 \times 10^{-7}}{16.1} = 4.7 \times 10^{-8} \left[\text{G} / \sqrt{\text{Hz}} \right] \cong 50 \text{ nG} / \sqrt{\text{Hz}}$$

Shot noize limit: ~ O(1nG)

The cell made by Prof. M.V. Balabas : φ 60 mm, T1 ~2s.

Thanks to Prof. Hatakeyama

a Balabas cell

Magnetic field (mG)

Magnetic field (mG)

No large difference in NMOR width

→ Wall performance does not limit the width \rightarrow residual field...

Modulated NMOR - measurement at B0 ~ 10 mG -

Frequency modulated
 Amplitude modulated

Pustelny *et al.* J.Appl.Phys. 103, 063108(2008)

Setup - measurement at B0 = 10 mG -

Amplitude modulation by using AOM:(Acousto-Optical Modulator)

Spectrum - measurement at B0 = 10 mG -

Modulation frequency : 9 kHz (AM) corresponds to twice the Larmor freq. at B0 = 9.645mG Magnetic field sweep: -11 mG \rightarrow +11 mG

$$v_F = \frac{g_F \mu_B}{\hbar}$$

= 461.7[kHz/G]
 \Rightarrow 4.5000[kHz]@9.7466mG

Magnetic sensitivity (at present)

$$\delta B = \left(\frac{d\phi}{dB}\right)_{B=0}^{-1} \delta \phi = \frac{2 \times 10^{-3}}{53.5 \times 10^3} \approx 40 \left[\text{nG}/\sqrt{\text{Hz}} \right]$$

Summary and Future

- High sensitive magnetometer is inevitable for atomic EDM experiments because main source of frequency stability comes from drifts of magnetic field (applied B₀ or environmental field).
- We have developed the Rb NMOR spectrometer for the operation of magnetometer.

Operation of modulated NMOR for measurements at B0 = 10 mG.

Improving NMOR-magnetometer performance;

Optimization of degaussing procedure; Optimization of cancelling field (to $<< \Delta B_z$.) Improving cell-coating procedure. Checking the T1 for the Rb cells

Noise studies; detection method, electronics, experimental room...

Introduction to spin maser setup