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Mixing of supercritical water and reactants affects the products

ZnO
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Figure 12. ZnO particles obtained in the reactor with the different mixing junctions. 
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Figure 13. Simulation results for Figure 12 (a) mixing configuration: a) Flow pattern, 
and b) particles concentration. 

 
hand, for the case of side injection, a relatively smooth flow pattern and 
uniform particle growth occur, as shown in Figure 14. This result agrees well 
with the experimental results shown in Figure 12. This result suggests that the 
simulation may enable us to design reactors rationally for hydrothermal 
synthesis under supercritical conditions.  
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hand, for the case of side injection, a relatively smooth flow pattern and 
uniform particle growth occur, as shown in Figure 14. This result agrees well 
with the experimental results shown in Figure 12. This result suggests that the 
simulation may enable us to design reactors rationally for hydrothermal 
synthesis under supercritical conditions.  

Zn2+ + 2H2O → Zn(OH)2 + 2 H+

Zn(OH)2 → ZnO + H2O



Visualization techniques

View cell

Aizawa, et al., J. Supercrit. Fluids 43, 222 (2007).
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234, 347, 438 ◦C to make final solution temperatures of 100,
200, 300, 400 ◦C, respectively. When the ratio was set to 2:1
(0.4 mL/min:0.2 mL/min), the pre-heater was set to 140, 284,
403, 496 ◦C to make final solution temperatures of 100, 200, 300,
400 ◦C, respectively. The precise temperature values were deter-
mined by calculation using an enthalpy balance. The cell was
heated to 100, 200, 300, 400 ◦C, respectively, to compensate for
the effect of thermal losses of the cell and to match the expected
outlet temperature from the mixing of the two streams. In super-
critical fluids, it is not clear that classical approaches to flow
regimes, such as Reynolds number, are strictly valid, however,
Reynolds number is roughly calculated as a point of reference in
this work, by Re = UD/ν, where U is the flow velocity, D the aver-
age of vertical length and horizontal length of the trench, and
ν is kinematic viscosity. Reynolds number was calculated on
the assumption that the fluid was homogeneous by the perfect
mixing. Reynolds numbers after complete mixing were 5–70
under these conditions. At this point in the research, although
it is desirable to analyze color gradients and compare those
with simulation results, available dyes typically are unstable in
supercritical water. For example, indigo carmine decomposes at
temperatures over 300 ◦C making it difficult to quantify density
or concentrations from the color gradients, however, the rate of
decomposition is slow enough to allow observation of flow pat-
terns. The rate of decomposition of the dye is on the order of
10 s, allowing enough time for visual observation of the mixing
at the video rate of 30 fps.

3. Results and discussion

Results of the mixing with both sides are shown in Fig. 6.
Preheated water entered from the left side of the channel-tee,
and colored water at room temperature flowed in from the
right (Fig. 6). The outlet of the channel is at the bottom in
Fig. 6. Flow rate of preheated water was 0.5 mL/min and that of
water at room temperature was 0.1 mL/min. For this case, pre-
heated water flowed above the color’s room temperature water,

Fig. 6. Mixing at various temperatures at 45 MPa. Flow rates of preheated water
and water containing dye are 0.5 mL/min and 0.1 mL/min, respectively. Pre-
heated water comes from left side, and water at room temperature comes from
right side. Temperature of preheated water is 116, 234, 347, 438 ◦C, respectively.

Fig. 7. Mixing at various temperatures at 45 MPa. Flow rates of preheated water
and water containing dye are 0.5 mL/min and 0.1 mL/min, respectively. Pre-
heated water comes from top, and water at room temperature comes from left
side. Temperature of preheated water is 116, 234, 347, 438 ◦C, respectively.

at room temperature at the inlet of water at room temperature
(right of channel-tee), which was due to the density differences
(0.6 g/cm3) between the two streams. Complete mixing was not
observed under 438 ◦C preheated water conditions, as a color
gradient existed from right to left. For this case, the Reynolds
number was estimated to 70 after complete mixing, so laminar
flow was expected at these conditions.

Fig. 7 shows other configurations of the channel-tee mixing.
Preheated water entered from the top, and colored water at room
temperature was put in from the side. Preheated water penetrated
into inlet of water at room temperature (left of channel-tee),
which was similar to Fig. 6. Complete mixing was not observed
even for 438 ◦C preheated water conditions, as shown by the
mixing at the outlet tube, in which a color gradient existed from
the left-side to the right-side (Fig. 7).

The mixing shown in Fig. 8 behaved differently from the
previous two examples. Preheated water entered from the side,

Fig. 8. Mixing at various temperatures at 45 MPa. Flow rates of preheated water
and water containing dye are 0.5 mL/min and 0.1 mL/min, respectively. Pre-
heated water comes from left side, and water at room temperature comes from
top. Temperature of preheated water is 116, 234, 347, 438 ◦C, respectively.

Wakashima, et al., J. Chem. Eng. Jpn. 
40, 622 (2007).
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Visualization of real apparatus

Previous studies revealed

• Buoyancy force
• Density difference
• Natural convection
• Cascade down

• Reactor design
• Rate of heating
• Mixing time

Neutron radiography

Shape of our mixing 
components

How the streams mix in the real apparatus ?



Why neutron radiography ?
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Previous studies
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Averaged images were obtained.
CT experiments



How to obtain CT images ?
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Experimental condition

Q1 (g/min) T1 (°C) Q2 (g/min) T2 (°C) Tmix (°C)

12.0 ~386 3.0 31 373

12.0 ~385 6.0 30 335

6.0 30 12.0 ~391 355

2.0 28 7.0 ~384 355Flow rate: Q2

Flow rate: Q1

Temperature: T1

P = 25 MPa

Temperature: T2

60 s for 1 image
200 images for one condition

Outer diameter: 1/8 inch
Inner diameter: 2.3 mm

2012/10/23~25 @ B4, 5 MWImaging area: 65×65 mm2 



Heated water from top
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Reconstructed image
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Summary

• 中性子線CT測定を行い、超臨界水熱合成反応器内の
流動・混合状態の３次元測定の可能性を示した。

• 流体シミュレーション計算の妥当性検証
• より解像度の高い観察
• 実際の生成物との比較

今後の展開
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