

中性子イメージング専門研究会 @京都大学原子炉実験所

2013/01/08-09

中性子ラジオグラフィを用いた 冷却平板への着霜現象の評価

Evaluation of frosting phenomena on cooling plate by using neutron radiography

Background

Neutron radiography

Total cross-section

軽水氷の微視的全断面積

*鬼柳ら(北大) 中性子イメージング研究会(2011.01.06)

⇒熱中性子レベルでは、結晶構造によらず減衰は ほぼ一定と考えてよい.

Neutron radiography

京都大学原子炉実験所(KURRI)

Neutron source

Nuclear reactor	KUR
Thermal output	1 MW, 5MW

本研究は 京都大学原子炉実験所 平成23,24年度共同利用研究 (23P12-5,24P4-5)として実施

・H.23年度~24年度(上): B-4 port
・H.24年度(下) : E-2 port
を利用して実施

✓ B-4 portでは,
 フィンチューブ熱交換器
 ✓ E-2 portでは,
 単一平板
 を用いた実験を行った.

Digital camera Camera CCD camera "PIXIS 1024B" (Princeton Instruments) 1024×1024 pixels Imaging array Lens "APO MACRO 180mm F3.5" (SIGMA corporation) 30 sec. Exposure CCD camera **Experimental condition** Ambient temperature [deg. C] 20 Inlet air temperature [deg. C] 6 Neutron 250 Air flow rate $[\ell/min]$ Beam -19 Brine temperature [deg. C] **Test section** Frosting time [min.] 145

Image procession

着霜時の減衰式

 $S(x, y, t) = G(x, y) \exp[-\mu_{mAl} \rho_{Al} \delta_{Al}(x, y) - \mu_{mf} \rho_{f} \delta_{f}(x, y, t)] + O(x, y)$

着霜量 $m_{f} = \rho_{f} \delta_{f,t} = -\frac{\ln\left(\frac{S(x, y, t) - O(x, y)}{S_{0}(x, y, t_{0}) - O(x, y)}\right)}{\mu} [g/cm^{2}]$

 $\mu_{mf} = \mu_{mw} = 3.482 \ [cm^2 / g]$

出典:Neutron Radiography Handbook (1982)

0

Experimental results

空気供給部

E-2 port

<u>E-2 port</u>

✓ 医療照射用重水タンクより得られる 熱中性子線を利用したラジオグラフィーポート

Thermal output	1MW, 5MW	
Beam size	φ15 cm	
Neutron flux @5MW	$3.2 \times 10^5 \text{ n/cm}^2\text{s}$	

✓ 撮像システムは 理研のグループにより 整備されたものを利用

テストセクション のセッティング

Experimental condition

Inlet air temperature [deg. C]	8	Frosting time [min.]	180
Air flow rate [<i>l</i> /min]	93	Exposure (CCD camera) [min.]	3

Experimental results

Summary

本一連の研究により以下の知見を得た.

- ✓中性子ラジオグラフィを用いて、各時間におけるフィン チューブ熱交換器および単一平板への着霜状態の透過画像 から空間的な着霜分布を可視化し、その時間変化を評価した.
- ✓ E-2ポートにおいては120mm角の冷却平板への着霜実験を行い、5MW運転時には出力誤差により、着霜量の算出にばらつきがみられたが、基準値を設け、補正することで妥当な値が得られた。

