超冷中性子源について

東京大学 ICEPP 特任助教 三島賢二

2013/01/18京大炉におけるビーム利用のための次期中性子源検討Work shop

超冷中性子(Ultra Cold Neutron)とは

<u>速度 v≦6.9m/s以下(252neV)の中性子</u>

UCNの特徴

- ニッケル等の表面で全反射
- 5T 程度の磁場で100%スピン偏極
- 重力に対し敏感:位置エネルギー1cm~1neV

v<6.9m(252neV)

さまざまな基礎物理実験に利用されているが、 より高密度のUCN源が必要とされている。

中性子	のエネル	ルギー
-----	------	-----

名称	エネルギー	波長	速度	温度	応用
高速中性子	500 keV以上	40 fm	10 ⁷ m/s	6 × 10 ⁹ K	核物理、宇宙物理
熱外中性子	10 eV	0.1 Å	44,000 m/s	1 × 10 ⁵ K	共鳴吸収
熱中性子	25 meV	1.8 Å	2200 m/s	300 K	回折
冷中性子	2 meV	6 Å	600 m/s	23 K	散乱
極冷中性子 VCN	50 µeV	40Å	100 m/s	0.6 K	干渉計
超冷中性子 UCN	300 neV	500Å	8 m/s	3 mK	EDM 、中性子寿命

速い

遅い

UCNの生成: 中性子冷却一般論

中性子(UCN源)の本質的な強度と は位相空間体積密度のこと。

 ・ 位相空間とは空間座標x,y,zと運動量座標 p_x,p_y,p_zで定義される6次元空間のこと。
 非相対論的ならp_xはv_xでも意味は一緒。

この位相空間内の密度は保存力場では変化しないのでUCN(中性子ビーム)の本質的な強度となる。

UCN密度を増やすには

リウビルの定理(Liouville's theorem)の制限

- 保存力:V(r)ポテンシャルでは位相空間密度は増えたり減ったりしない。位相空間密度を変えるにはV(v)のような相互作用が必要。
- UCNは速度が v_c 以下という条件があるので 位相空間密度一定 = 空間密度一定
- 中性子フラックスはモデレーター表面を超えない。

リウビルの定理(Liouville's theorem)とは

<u>ハミルトンカ学</u>におけるリウヴィルの定理(Liouville's theorem)とは、<u>確率分布</u>がどのように 時間発展するかを予言する<u>定理</u>であり、フランスのジョゼフ・リウヴィル</u>によって発見された。 典型的に、てが位置と<u>運動量の座標</u>を表すとして、pは系が<u>相空間</u>の微小体積dて中に見つかる <u>確率</u>である。てはN個の<u>粒子</u>の系において、変数の組を表すのに便利な簡潔的表現である。 リウヴィユの定理によると、ハミルトニアンHと分布関数pを持つ系で

$$\frac{\partial}{\partial t}\rho = -\{\rho, H\}$$

が成り立つ。ここで中括弧はポアソン括弧を表す。

この定理の結果で興味深いのは、時間発展に対して相空間中の<u>体積</u>が保存するということである。 もし系が相空間で、ある体積を持って始まると分かっているとき、時間が経った後でも系は同じ 体積を持つ部分空間にある。

リウヴィルの定理は、<u>統計力学</u>の基礎としても重要である。粒子の衝突など、<u>正準方程式</u>に 従わない場合はリウヴィルの定理はそのままでは成り立たず、これを記述するのが <u>ボルツマン方程式</u>である。

http://ja.wikipedia.org/wiki

中性子密度を増やすには

保存場(ポテンシャル)では位相空間密度は増えないので、モデレーター以前で増やす必要がある。

位相空間密度:変える vs 変えない

すべての粒子に同様に作用する保存場か否か。

- 変える
- 散乱
- 減速材
- ・レーザー冷却
- 電子冷却
- Bragg peakでの減速 (荷電粒子)

他との物質の位相空間を変えない限り 位相空間密度は変化しない。

変えない

- 反射
- ・ミラー
 - レンズ
- 重力
- Doppler Shifter
- Bragg反射

 (ただし厳密に言うと厚さの 分だけ変化してる。)

終状態のエネルギーが速度に依存。

Muon Cooling

Daniel M. Kaplan

荷電粒子でも基本は同じ。イオン化プロセスは非保存力なので、ブラッグピークを用いて位相空間密度を 増加させることが可能。

中性子密度を増やすには

Boltzmann分布と中性子密度

$$\Phi(E)dE = \Phi_0 \frac{E}{\left(k_B T\right)^2} \exp\left(-\frac{E}{k_B T}\right) dE$$

Fluxと密度の関係式(重要)
Fluxを速度で割ると密度になる。

$$\rho(E)[1/cm^3] = \frac{\Phi(E)[1/cm^2/s]}{v(E)[cm/s]}$$

 $\rho_{UCN} = \int_0^{E_{UCN}} \frac{\Phi(E)}{v} dE \cong \frac{2}{3} \frac{\Phi_0}{v_{UCN}} \frac{E_{UCN}^2}{(k_B T)^2}$

 $= 9.1 \times 10^{-16} \Phi_0[n/cm^3/s] @ 300K$

 $= 2.0 \times 10^{-13} \Phi_0 [n/cm^3/s] @ 20K$

冷却によるUCN生成 Superthermal法

- 中性子の温度が低くなると(T_n<20K)、非弾性散
 乱を引き起こす準位がなくなってくるので、減速
 材の温度が低くても中性子は冷えなくなってくる。
- そこからUCNに行く場合はボルツマン統計では 扱えない。
- 中性子は平衡状態まで冷えないので熱的非平 衡を扱う。

散乱による減速

N: 原子核数

- σ : phonon-neutron cross section
- $\Sigma: p_i \sigma$

 β : 1/k_BT

UCN密度p₂は

微分方程式を解いて

$$\rho_2 = P \times \tau \left(1 - \exp\left(-\frac{t}{\tau}\right) \right)$$

ここで

$$P = N\Sigma(1 \rightarrow 2)\phi_1$$
$$\tau = \frac{1}{N\Sigma(2 \rightarrow 1)v_2}$$

散乱による減速

 k_2

N: 原子核数

 σ : photon-neutron cross section

- Σ: $p_i \sigma$
- β : 1/k_BT

 $\Sigma(1 \to 2) = p_1 \sigma(1 \to 2)$

Down-scattering cross section

$$\Sigma(2 \to 1) = p_2 \sigma(2 \to 1)$$

Up-scattering cross section

Phononの密度は

$$\frac{p_1}{p_2} = \frac{e^{-\beta E_1}}{e^{-\beta E_2}} = e^{-\beta(E_1 - E_2)}$$
詳細釣合(detailed balance)の法則より

$$\frac{k_1}{2}\sigma(1 \rightarrow 2) = \frac{k_2}{2}\sigma(2 \rightarrow 1)$$

 k_1

ゆえにUp-scattering cross sectionは Down-scattering cross sectionを用いて

$$\Sigma(2 \to 1) = \left(\frac{k_1}{k_2}\right)^2 \left(\frac{p_2}{p_1}\right) \Sigma(1 \to 2) = \frac{E_1}{E_2} e^{-(E_1 - E_2)/k_B T} \Sigma(1 \to 2)$$

散乱による減速

となる。

蓄積時間

UCN密度は蓄積時間に比例するが、全ての減衰を合わせた値になる。

$$\tau_{total}^{-1} = \tau_{up-scattering}^{-1} + \tau_{n-decay}^{-1} + \tau_{absorption}^{-1} + \tau_{wall-loss}^{-1} + \dots$$

さっきのτを計算してみる。 ヘリウムの場合、E₁=1meV, E₂=252neV, T=0.65K, ∑=1.3barn, N=0.019/barn/cmとすると

$$\tau = \frac{1}{N\Sigma(1 \to 2)v_2} \frac{E_2}{E_1} e^{(E_1 - E_2)/k_B T} = 841[s]$$

となる。これ以上冷却しても他の減衰が効いてくるので蓄積できなくなり、 もう熱平衡に近づかなくなる。

$$\rho_{UCN}(\max) = P \times \tau_{total}$$

結局こうなる。

十分な冷却を達成するには

• 長時間の冷却

吸収断	「面積の小さい物質	質を選択する	
	熱中性子	単体中での	
	捕獲断面積	寿命	
•He	0 barn	886 sec	
• D	0.52 mbarn	150 msec	
• 0	0.19 mbarn	440 msec	
• C	3.5 mbarn	11 msec	
• F	9.6 mbarn	8.8 msec	

中性子漏洩を減らす

反射材を用いる

特に低エネルギーで有効なものを

• 高効率の減速

反応断面積が大きい 低エネルギー領域に大きな非弾性散乱がある

Superthermal Converters

Converter Material	Superfluid ⁴ He	Solid ortho-D ₂	α- ¹⁶ O ₂
Interaction	Phonon	Phonon	Phonon, Magnon
Temperature of material	0.7 K	5 K	2 K
Optimal neutron temperature	9 K	29 К	12 K
Production rate with 30 K neutrons	9.3×10 ⁻¹⁰ Φ_0 /cm ³ /s ¹⁾	1.0×10 ⁻⁸ Φ ₀ /cm ³ /s ²⁾	2.4×10 ⁻⁹ Φ_0 /cm ³ /s ³⁾
Ideal storage time	886 sec	146 msec ⁴⁾	489 msec
UCN density with with 30 K neutrons	8.2×10 ⁻⁷ Φ ₀ /cm ³	2.4×10 ⁻⁹ Φ_0 /cm ³	$1.2 \times 10^{-9} \Phi_0 /\text{cm}^3$

UCN is defined as $E_{\rm UCN}$ <252 neV in moderator.

- 1) R.Golub, D.J.Richardson, and S.K.Lamoreaux, "Ultra cold neutron", Adam Hilger, Bristol (1991)
- 2) Z. Ch. Yu, et al., Z. Phys. B 62 (1985) 137
- 3) Gutsmiedl et al., http://arxiv.org/abs/0911.4398v2
- 4) C.-Y.Liu, A.R.Young, and S.K.Lamoreaux, Phys.Rev.B62, 3581 (2000)

UCN sources in the world

- 1.2 MW Proton Cyclotron
- 590 MeV 2mA
- 6 sec beam pulse / 800 sec for storage
- 30 liter of solid D₂
- D₂O moderator
- Pb target

Characterization of the PSI Ultra-Cold Neutron Source ABHANDLUNG zur Erlangung des Titels ETH ZÜRICH, Leonard Göltl LANL solid D₂

- 100 kW Proton Linac (20Hz)
- 800 MeV $10mA \times 625 \mu s$
- 5 shots in 5 sec for storage
- 2 liter of solid D₂
- 150K-CH₂ moderator
- W target

UCN density was measured as 85 ± 10 UCN/cm³/ μ C, and agree with calculated value of 107 ± 20 UCN/cm³/ μ C

A. Saunders et al., Physics Letters B 593 (2004) 55–60 A. Saunders et al., Rev. Sci. Instrum. , In press. **RCNP He-II**

- 400 W Proton Cyclotron
- 400 MeV 1μA
- 10 liter of He-II
- 20K-D₂O moderator
- Pb target

UCN density was measured as 15UCN/cm³

J-PARCの高輝度ビームを使った DOPPLER SHIFTERによるUCN生成

中性子源の位相空間密度

位相空間密度を求める式

Coupled moderatorの性能

$$n(v) = \overline{\phi} \frac{1}{2\pi v_T^4} \exp\left(\frac{v}{v_T}\right)^2 / f\Delta \tau$$

T.W. Dombeck et al., Nucl. Inst. Meth 165 (1979) 139.

n(v)	: 速度vの中性子の
	位相空間体積密度
$\overline{\phi}$:時間平均中性子フラックス
v_T	: 中性子の温度
f	: パルス周波数
Δau	: パルス幅

パルス化の効果

熱中性子フラックス @10m	$4.6 imes 10^8 \ { m cm}^{-2} { m s}^{-1}$
モデレーター表面で のフラックス	$2.1 imes 10^{13} \text{ cm}^{-2} \text{s}^{-1}$
中性子速度	969 m/s
中性子温度	57 K
パルス周波数	25Hz
パルス幅@1380m/s	92 μs
パルス幅@136m/s	400 μs

http://j-parc.jp/MatLife/ja/source/index.html

 $\overline{n}(v\langle\langle v_{T})=0.033[n/cm^{3}/(m/s)^{3}]$ $n(v\langle\langle v_T) = 3.3[n/cm^3/(m/s)^3]$

UCNの密度

位相空間密度は保存力かでは変化しないので、 そのままUCNに変化させられるとすると

位相空間密度は変化しない。

この Doppler Shifter の特徴

136 m/s の中性子を1回の反射で UCN 化できる.

装置に搭載した鏡.

Bragg反射で中性子を反射.

実験場所 J-PARC MLF BL05への設置

非偏極ビームライン(真ん中のライン) での中性子スペクトル @120 kW

Doppler Shifter でUCN化をねらえる限界.

- ・1度に反射する粒子数を多くしたい.
- ・UCNのTOFも見やすくしたい.
- ・シフターの直径 65 cm, 中性子源 25 Hz.

25 Hz pulsed beam 現在 120 kW

回転数 2000 rpm で 136 m/s を 3 パルスに 1 回蹴り出す.
 腕の長さ 325 mm で 68 m/s

By S.Imajo

³He UCN Detectorのスペクトル

ただし、これはUCN以外も含めた分布全体の合計出力.

UCNの応用。 普通に中性子を使う人に。

UCN Re-acceleration

Fig. 3. Experimental antisperant of the rotating phase space transformer showing the entrance rule of the UCR and the entrance of up-scattered restricts (left). Model 4 double arm more right.

原理はDoppler Shifterと全く同じ。 i-HOPG(d=0.874 nm)を速度 226m/s(6600rpm)回転させ、UCN を加速する。結果翅に同期して 単色のパルスビームが得られた。 UCNはその冷却過程のため、 熱中性子源より位相空間が高い。そのため、UCNを作ってから加速したほうが、位 相空間密度的に得(なはず)。

Fig. 5. Tane resolved up-scattered intensities from four different crystals.

Mayer et al., Nuclear Instruments and Methods in Physics Research A 608 (2009) 434-439

より高密度なUCNを。 新UCN源とREBUNCHING

UCN密度を増やすには

保存場(ポテンシャル)では位相空間密度は増えないので、モデレーター以前で増やす必要がある。

1. 中性子の数を増やす。

2. 温度を下げる。

温度が十分に低い場合、平衡状態に達するまでに時間が かかる。 その場合のUCN密度は p[UCN/cm³] = P[UCN/cm³/sec] × τ [sec] となる。 p: UNC density [UCN/cm³]

P: Production rate [UCN/cm³/sec]

 τ : Storage time [sec]

J-PARC Linac for spallation source

Specification of J-PARC Linac

Proton Energy	400MeV(at 2013?)
Pulse width	0.5 ms
Repetition	25 Hz
Peak Proton Current	50 mA
Average Current	0.625 mA
Peak Power	20 MW 年 注目!
Average Power	250 kW

パルス性能をうまく使えないか?

UCN生成源の計算

20kWを想定

 $\Phi_{boltzmann} = 6.2 \times 10^{11} \text{ n/cm}^2/\text{pulse (10kJ)}$ Production Rateを1.0x10⁻⁸ $\Phi_{boltzmann}$ とす ると $\rho_{UCN} = 6200 \text{ UCN/cm}^3/\text{pulse}$

J-PARC 線形加速器の陽子ビームを 専用ターゲットに直接入射、 超冷中性子に変換し 光学系を駆使して 蓄積容器に高密度で 超冷中性子を輸送する

J-PARC UCN

J-PARC PAC に プロポーザルを提出(P33)

Neutron Rebuncher

パルス状に発生するが、輸送の間に広がってしまう

not different from continuous UCNs ...

Peak proton power = 20MW

Average proton power = 250kW

Neutron Rebuncher

パルス状に発生するが、輸送の間に広がってしまう 蓄積容器入り口で集束させる

take in pulsed UCN while door is open

 $\leftarrow \rightarrow$

the door closes, UCNs broaden in the bottle

\rightarrow	_	-
\leftarrow		\rightarrow

take in next pulsed UCN. some UCNs overflow, the others stay.

the door closes, the density increases by the pulse

Neutron Rebuncher

Neutron Rebuncher

Neutron Rebuncher

RF磁場を使ったスピンフリップで 中性子を加減速する

AFP flipper による減速

Neutron Rebuncher

RF磁場を使ったスピンフリップで

中性子を加減速する

まとめ

- ・中性子電気双極子モーメントなどの実験のため、より高密度のUCNが必要とされている。
- UCN密度=位相空間密度なので、UCNを生成するには特殊な(長時間)冷却が必要。
- MLFの"強い"ビームを活用してBL05にドップラーシフ ターを設置。計算通りの動作を確認。

J-PARC LINAC (Peak Power 20MW)で
 パルスUCN生成⇒Rebunchingを計画提案中。

- [1] R.Golub, D.J.Richardson, and S.K.Lamoreaux, "Ultra cold neutron", Adam Hilger, Bristol (1991)
- [2] Dissertation of Chen-Yu Liu, "A Superthermal Ultra-Cold Neutron Source", Princeton University, (2002)
- [3] K. Tesch, Radiat.Protec.Dosim. 11 (1985)165
- [4] K.Mishima et al., Proceeding of ICANS 15th Meeting of the International Collaboration on Advanced (2000)
- [5] R.Golub et al., Z.Phys.B 51(1983) 187
- [6] Y.Masuda, 提案書(2007)
- [7] A.Serebrov et al., PNPI Preprint 2359(2000)
- [8] P.G.Harris et.al., Phys.Rev.Lett. 82, 904 (1999)
- [9] S.Arzumanov et.al., Phys.Lett. B483, 15 (2000)
- [10] V.V.Nesvizhevsky et.al., Nature 415, 297 (2002)
- 「11」Dissertation of Kenji Mishima, "Irradiation effect of Ortho deuterium for UCN source", Osaka University, (2004)