

J-PARCエネルギー分析型中性子 イメージング装置RADENの建設

日本原子力研究開発機構 J-PARCセンター 篠原武尚

プロジェクトメンバー

プロジェクトリーダー 鬼柳善明 (名古屋大学)

建設メンバー

篠原武尚、甲斐哲也、及川健一、大井元貴、中谷健、原田正英、酒井健二、 相澤一也(J-PARC)
瀬川麻里子、飯倉寛(JAEA)
加美山隆、佐藤博隆(北海道大学)
持木幸一(東京都市大学)
横田秀夫、山形豊(理研)
世良俊博(九州大学)

林田洋寿, J.D. Parker, 松本吉弘, 張溯源 (CROSS)

アドバイザー

新井正敏、神山崇、ステファヌス・ハルヨ、曽山和彦 (J-PARC)
 前川藤夫、松林政仁、安田良、酒井卓郎、呉田昌俊 (JAEA)
 大沼正人、木野幸一 (北海道大学)
 江藤剛治 (立命館大学)
 齋藤泰司 (KURRI)

諮問委員会メンバー

中西友子(東京大学)、川端祐司 (KURRI)、E. Lehmann(PSI)、B. Schillinger(TUM)、 N. Kardjilov(HZB)、W. Kocklemann(ISIS)

BL22 RADEN運転開始 - ビーム出しました!-

平成26年11月4日 11月7日

自主検査 (Inter Lock試験、遮蔽検査資料、線量確認) 施設検査 (原子力安全技術センター) 関係者へのお披露目、試運転(First beam) → 施設検査合格後、機器調整を開始

初めてのビームシャッター開操作

BL22 RADEN調整運転開始 - 初めての撮像 -

ED 132

MED_036deg

ED_1560

WED_048deg

J-PARC/MLF

ブラッグエッジ	Sharp pulse width					
$\Delta \lambda / \lambda > 0.2\%$ -> ひずみ計測には高い波長分解能が必要						
$\lambda < 5$ Å						
	Long source-sample distance					
-> 温度計測には高いエネル	ギー分解能が必要					
<u>E > 1 eV</u>						
-> 高エネルギーまで使える	まど有利					
偏極解析						
$\Delta \lambda / \lambda > 1\%$	Short source-sample distance					
<u> </u>						
中性子ラジオグラフィ						
高い中性子束	rious aperture size can be selectable.					
大さな代野範囲 -> A4サイスを 白色山姓子 / 準単色山姓子宇殿	リンショットで環像					
ロビアほ子 / デキビアは丁夫司 様々な討料措造機器の利用	Wide room is essential					
<u> 14 * * * * * * * * * * * * * * * * * * </u>	wide room is essential.					

世界で最初のパルス中性子イメージング専用ビームライン

http://www.chusonji.or.jp/en/pre cincts/konjikido.html

中尊寺 金色堂

本格的なエネルギー分析型中性子イメージング装置

- パルス中性子の特徴を活かして高効率・高精度の測定
- → 観測対象の構成核種情報・結晶組織情報・温度情報・磁場情報...

高性能中性子ラジオグラフィ装置

- •100mmロ~300mmロのビームサイズ、広い範囲でL/D値を選択可能
- •FOVと空間分解能に応じて検出器を選択可能
- 高速CT再構成用計算環境を整備
- ・大型試料、特殊環境、その場観察の実験環境

建設スケジュール

ビームコミッショニング

Two sample position

J-PARC/MLF

- L=18m: high neutron flux
- L=23m: high wavelength resolution , large beam size

Two sample position

J-PARC/MLF

- L=18m: high neutron flux
- L=23m: high wavelength resolution , large beam size

基本性能(計算值) McStas simulation

0.0

Wavelength (Å)

シャッター交換 → 最大視野を300mmまで拡大す るため、3つ内挿コリメータ付きに交 換

ロータリーコリメータ 上流側→ L/D比を選択 下流側→ ビームサイズを制限

Rotary Collimator

6131 ····		Shutter			Rotary Collimator			
Collimator		100x100	50.1mmφ	26.4mmφ	15mm¢	5mmφ	2mm¢	
	L=18m	L/D	180	298	520	667	2000	5000
		Beam Size	100 mm	173 mm	221 mm	91 mm	113 mm	120 mm
	L=23m	L/D	230	398	720	1000	3000	7500
		Beam Size	100 mm	250 mm	300 mm	144 mm	173 mm	181 mm
Relative Flux		100	30	9.6	5.3	0.59	0.09	

ダブルディスク低速チョッパー (25/12.5 Hz) DC2はCW/CCW切替え可能

B₄C スリット ビーム整形 (1 x 1 ~ 162 x 162 mm²)

✓ T0 チョッパー (25 Hz)

B4C coated disk

Hammer

J-PARC/MLI

B4C Slit

T0 Chopper

試料ステージ

Stago	Position	Movable axis			Max.	Table
Slage		θ	X, Y, Z	R _x , R _y	load	size, φ
Large	L=23m	±173 °	±300 mm	-	1.0 ton	700 mm
Medium	L=18m	±173 °	±100 mm	±5 °	600 kg	300 mm
Small	Portable	360°	-	±5 °	10 kg	150 mm

J-PARC/MLF

試料チャンバー

600 x 600 x 900(H) mm 回転ステージ: 300 mm-φ, 耐荷重 = 30 kg 恒温恒湿チャンバー 温度範囲: +10 ~ 40 °C、湿度範囲: 20 ~ 80 %RH LED照明(赤・青) 極環境チャンバー 温度範囲: -10 ~ 80 °C 希ガス置換

- ・中性子回折検出器 (³He PSD tubes)
 -> ブラッグエッジデータの高精度化
- ・ガンマ線検出器 (Ge detector and scintillator)
 -> 共鳴吸収データの解析補助、照射試料の放射化チェック
- •3次元偏極度解析機器 (Polarizer, Analyzer, Spin Flipper, Spin Rotator, Magnetic Shield..)

ユーティリティ
 冷却水、ガス導入、電力、排気、圧縮空気

Scintillation detector

PARC/MLF

高時間分解能検出器と高空間分解能検出器を整備

μNID

μNID

高時間分解能検出器と高空間分解能検出器を整備

Cutnickness 5µm

GEM

- 大容量ストレージと高速データ転送ネットワーク
- ・ 並列計算用GPUクラスター →2015年3月から試用開始
- 各種ソフトウェア
 制御ソフト
 解析ソフト
 CTソフト

X Script Status	samp.	
Acquisition Data Analysis Edit Entry	Load Script Save Script Show Graph Save Summary	
Acquisition: Procedures Andor Selected procedure: Daq Description: Movings sleep	Acquisition Status: Ready-Initial Run Number: 001593 Run Number: 001593 Experiment ID: 0000022 Movings FREEL6ANS_ALt Movings 51	Script Status: STANDBY Position: 0 / 0 Start Time: Est, Total Time: PAUSE END
Parameters:	Scn Movings_S2_Alt Movings_5D1 Movings_STAGE Movings_STAGE_Middle Movings_STAGE_Middle Movings_STAGE_Small	ited Time Start Time Finish Time

Experimental Scheduler

File						
2014/Dec/02 10:45:37	L/D	Status I	Monitor			
1.Shutter Status:⊡ 100 mm	3.Rotary Collimator1 Status:102 mm□	6.Blocker Status: Close	7.Rotary Collimator2 Status:131 mm⊡			
2. Filter Status:Open Open Open Open	4. T0 Chopper Status:2500Hz	5. Disk Chopper Status:0.0Hz 0.0Hz	Beam OFF			
$1 \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \end{array}$						
8. Slit 1 Status: Ready Δx,Δy[mm]:(171.6,171.8) Center: (-2.3,1.0)	9. Slit 2 Status: Ready Δx,Δy[mm]:(173.0,172.0) Center: (0.0,0.0)	10. Lift Status:Top 10000.0				
12-1. Small Stage Status: θ[deg],ωx[deg],ωz[deg]: (0,0,0):	12-2. Middle Stage Status: x,y,z[mm],θ[deg]: (0,0,0,0):	12-3. Large Stage Status: x,y,z[mm],θ[deg]: (0,450000,1500000,0):				
11. Detector table at	13. Detector table at					

ビームの特性評価

強度(金箔測定)、スペクトル、パルス幅(熱・冷中性子~熱外領域)、 ビームサイズ、L/D、ビーム発散度、輝度分布

検出器特性評価 空間分解能 線形性 一様性 計数率•検出効率

機器調整・ソフトの動作確認(バグ出し) 光学機器(フィルター、チョッパー、RC、スリット) → 概ね完了 試料周辺機器(ガンマ線検出器、試料チャンバー、etc)

各手法の試験

ラジオグラフィ(撮像条件の検討) CT (分解能を上げて再度挑戦) ブラッグエッジ、共鳴吸収、偏極解析

①引き続きコミッショニング → 装置性能の把握

②エネルギー分析型中性子イメージングの開発 ブラッグエッジ法・共鳴吸収法・偏極中性子法 → 実用化、CTの導入など 干渉イメージング法(回折格子型位相コントラスト)の試験

③機器開発、ラジオグラフィの高度化 検出器高度化 高空間分解能化 → 10µmの空間分解能の実現 高計数率化 → 計数型検出器の高度化 高感度化

薄い試料・微小試料の測定、測定時間の短縮(=放射化の低減) 手法開発

定量化(透過像から観測対象の密度等を定量的に評価) ラミノグラフィの導入

④試料環境の整備・高度化

高温・低温・試験機などの整備、ソフトウェアの改良

世界初のパルス中性子イメージング専用装置「螺鈿」の建設

- 本格的なエネルギー分析型中性子イメージング実験の実用化と高性能中性子ラジオグラフィ・トモグラフィ実験環境の提供
- 2014年11月に施設検査に合格。ファーストビーム を受入れ、装置のコミッショニングを開始。
- 2014年度中に予定していた機器のインストールを
 完了
- 2015年度よりユーザー供用を開始。装置課題としてコミッショニングと装置開発を継続。

ビームパワー

現在:300kW 2015年1月:400kW 2015年2月:500kW

http://j-parc.jp

