流通式超臨界水熱合成反応器内の 熱流動場の可視化

高見誠一',小澤恭兵²,杉岡健一²,久保正樹²,塚田隆夫², 阿尻雅文',杉本勝美³,竹中信幸³,齊藤泰司4

東北大学多元物質科学研究所
²東北大学大学院工学研究科
³神戸大学大学院工学研究科
4京都大学原子炉実験所

Introduction

Hydrothermal synthesis of metal oxide nanoparticles

Produced metal oxide nanoparticles

Cu₂O

NiO

CeO₂ TiO₂ ZrO₂ CuO ZnO RuO₂ Fe₂O₃ MnO₂ Fe₃O₄

MgFe₂O₄ BaTiO₃ $CoAl_2O_4$ $Gd(OH)_3$ LiCoO₂ LiMn₂O₄ Ni ITO, IZTO

TiO₂:Nb-Co AIOOH Cu

Synthesis with plug-flow reactors

Batch reactor

2~3 min

Synthesis with plug-flow reactors

Size of products

Plugging

T.Adschiri, et al., in Materials Chemistry in Supercritical Fluids, Research Signpost, 79–97 (2005)

Mixing of supercritical water and reactants affects the products

Experimental approaches

Model fluid

View cell

 $\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$

Buoyancy force Blood, et al., Chem. Eng. Sci. 59, 2853 (2004). rectangular flow Cascade down

Aizawa, et al., J. Supercrit. Fluids **43**, 222 (2007).

Mixing in real apparatus is difficult to visualize.

Mixing of two water streams

300~400°C, 25 MPa

Density of water @ 25 MPa

Difference in water density can be visualized.

Experimental setup

@ B4 port of Kyoto University Research Reactor Institute S. Takami et al., J. Supercrit. Fluids 63, 46 (2012).

Experimental condition for 2D

Temperature: T_{SC} Flow rate: Q_{SC}

Temperature: $T_{RT} = 21^{\circ}C$ Flow rate: Q_{RT}

Outer diameter: 1/8 inch Inner diameter: 2.3 mm <u>P = 25 M</u>Pa

30 s for 1 image6 images for one condition

Q _{SC} (g/min)	Q _{RT} (g/min)	T _{SC} (°C)	Re _{Sc}	T _{mix} (°C)	Re _{mix}
8		385	2.5×10 ³	360	1.2×10 ³
8	2	385	2.5×10 ³	341	1.2×10 ³
8	4	385	2.5×10 ³	303	1.1×10 ³
12	1.5	393	4.8×10 ³	380	2.4×10 ³
12	3	393	4.8×10 ³	377	2.3×10 ³
12	6	393	4.8×10 ³	338	2.0×10 ³

Averaged water density

Experimental condition for tomography

Temperature: T₁ Flow rate: Q₁

Temperature: T₂ Flow rate: Q₂

Outer diameter: 1/8 inch Inner diameter: 2.3 mm

P = 25 MPa

Imaging area: 65×65 mm²

60 s for 1 image 200 images for one condition

OCTOPUS software was used for CT reconstruction.

Heated water from side

Reconstructed image

5 mm

Reconstructed image

6.0 g/min

— 5 mm

Horizontal slicing

Comparison between mixing modes

Nanoparticles were produced using these mixer.

Experimental results

How these products were formed ?

Flow dynamics simulation

- Navier-Stokes equations were solved considering buoyant force
- Temperature-dependent properties of water were given as fit curves of NIST database
- Temperature and flow rate of inlet streams were given
- Parabolic flow velocity profile at the inlet was supposed
- No control at outlet stream
- FLUENT code was used to solve the equations
- Non steady-state calculation was performed

Validation of simulation

Temperature of streams

Numerical simulation reproduced experimental results.

Chemical reaction

 $Ce(NO_3)_3 \rightarrow CeO_2$

Reaction rate

$$r = k \left[\operatorname{Ce}(\mathrm{NO}_3)_3 \right] = \frac{d \left[\operatorname{CeO}_2 \right]}{dt}$$

Reaction rate constant

Adschiri T. Chem. Lett., 2007, 36, 1188-1193

Simulation results

Unsteady-state vortex flow

Visualization of plugging

Radiography measurements with supplying metal ion solution 395.3°C 24.0 g/min

Summary

Mixing behavior of water streams in a flow-type chemical reactor was visualized by neutron radiography.

Mode of mixing affected the produced nanoparticles.

Numerical simulation was checked by neutron radiography.

In future, the combined use of radiography and simulation can design new mixer to produce better nanoparticles.

Acknowledgment

This work has been performed under the Visiting Researchers Program of Kyoto University Research Reactor Institute.