

戸今AG

京都大学原子炉実験所では，平成14年度より，文部科学省の革新的原子カシステム技術開発公募事業の一環として，同省の委託事業で「FFAG加速器を用いた加速器駆動未臨界炬に関する技開発」を進めています。この技術開発では，エネルギー可変型 FFAG加速器を新たに開発•設置し，これを既設の京都大学臨界集合体実験装置（KUCA）と繋いで，加速器駆動末臨界炬内で中性子がどのように増倍されるかなどの特性を調べることを目的と ています。この炉は，ノーベル物理学賞受賞者のカルロ・ルビア博士が，「暴走事故の心配がない安全性の高いエネルギー増倍シ ステム」になると推奨して一躍世界の注目を浴びるようになった もので，加速器で未臨界状態の核燃料体系（停止中の原子炬と同 じもの）を稼動させるという画期的な原子カシステムです。通常 の原子炉では，核燃料であるウラン－235などの核分裂で発生し た中性子によって次々に核分裂が起こり，臨界状態を維持するこ とができる体系になるよう，つまり核分裂の連鎖反応が持続する ように設計されています。一方，加速器駆動未臨界炉は未臨界状態で運転しますので，外から中性子を供給してやらなければ，核分裂の連鎖反応を持続することができず，炬は停止してしまいます。 そのため，加速器で高エネルギーの陽子をターゲット（標的）に当 てて，核破砕という反応を利用して大量の中性子を発生させ，こ れを未臨界の核燃料体奚に供給して核分裂の連銷反応を維持し ます。したがって，加速器を止めれば，直ちに炉は停止することに なります。
この加速器駆動未臨界炉は，大量の中性子を発生することがで きますので，研究用原子炉（KUR）と同様に様々な科学研究や原子炉医療を目的とした中性子源としても利用できる可能性があり ます。私達の研究は，このような中性子源の開発を目指したもの です。また，この炉の中に色々な物質を持ち込めば，中性子による核変換反応を起こさせることができますので，いわゆる核変換処理用の炉となることが期待されます。例えば，発電用原子炉の使用済燃料から発生する，強い放射能を持った高しベル廃棄物中の長寿命放射性物質（長い間放射能を持つ物質）を，この炉の中に持ち込めば，短寿命放射性物質（短い間しか放射能を持たない物質）に変えるという処理が行えると考えられます。もしこれがうま くいけば，高しベル廃棄物を長期間にわたつて貯蔵•管理しておか なければならないという問題を解消することができます。世界的 には，主に核変換処理の目的で加速器駆動未臨界炉の研究開発 が行われています。
FFAG加速器は，固定磁場強集束（Fixed Field Alternating Gradient）型加速器の略で，磁場は時間的には変化しません（固定磁場）が，空間的には強弱の分布を持ち，これによって，電気を帯びた陽子の集団が流れる陽子ビームの空間的な広がりを強く絞る（強集束）ことのできる加速器です。1953年に大川弘博士が源理を編み出し，2000年に高エネルギー加速器矿究機構（KEK）

の森義治教授（現原子炉実験所教授）が，世界で初めて陽子加速 こ成功しました。原子炉実験所で開発中のFFAG加速器は，3段 のFFAG加速器から構成されています。このうちの2段目と3段目は，すでにKEKで開発済みのものと同じ型ですが，初段のもの は磁場の形状や加速方式などに幾つもの新しい試みを盛り込ん だ世界初のものです。写真は今年8月現在のFFAG加速器の状況 で，現在，このFFAG加速器で陽子を加速して，送り出す試験をし ているところです。このFFAG加速器とKUCAとを結合して，今年の10月には加速器駆動末臨界炉の実験を開始したいと努力し ているところです。もしこの実験が成功すれば，加速した陽子ビ ームによって中性子を発生させる方式の加速器駆動未臨界炉実験としては世界で初めてのものになります。
FFAG加速器を収容する建物は，イノベーションリサーチラボと呼ばれ，平成16年3月に完成しました。この建物には，加速器を

使った物理実験や化学実験，生物実験が行える実験室のほか，医療エリアが予め用意されています。今進めている研究プロジェクトが終了した後は，加速器を利用した様々な新しい研究や医療を開始し たいと考えています。しかし，そのためには，現在開発中のFFAG加速器のままでは不十分で，さら に加速器を高性能にするなどの必要があります。 また，様々な実験や医療に使う装置も順次整えな ければなりません。そのため，原子炉実験所は，さ らなる予兟の猚得や必要な研究開発を行うベく努力を続けています。関係各位の暖かいご支援 ご協力を賜れば幸いです。

ASKとが，Ma

21世紀の水筧姫問聞の解決に向けて

放射能噮墳動態工学研究分野•馬原保典教授
皆さんに歳を尋ねて，ご自分の歳が答え られない方は，ますいないはず，それでは，
何人の方が正確にご自分の歳を答えられる でしょうか。それでは，記録が無いものの年齢はどうやって決めるのでしょう？例えば，遺跡から出土した土器の年齢は，それに含 まれる炭素－14の放射能を測定しておおよ
 そ推定が出来ます。
土器とは異なり地下水の場合は，どうやってその年齢を決めるの でしょう？地下水のように動き易いものの場合，地下で地下水が他 の地下水とは混じりあわないでトコロテンのようにゆつくりと一雨で との固まりとして押し出し流れで動くなどの条件の下，雨水が地下 にもぐり地下水となって井戸等に出てくるまでにかかった時間を地下水の年齢として，地下水中に含まれる天然放射能や周りの地層と化学反応を起こさないヘリウムなどの不活性ガスの蓄積速度とそ の溶存量から推定することが出来ます。
当研究室では，天然放射能であるトリチウム，炭素－14や塩素－36 など水と一緒に動く天然の時計を使い，循環速度の速い数年程度 の浅い地下水から，深いところの殆ど流れていない数百万年に至る

辰子敬を利用した新しい物質枓学研究の展開を目指して

核放射物理学研究分野•瀬戸誠教授

現代の我々の生活は，高度な医療，安定し た電力，航空機や電車等の大量輸送機関，高性能なコンピュータ等に支えられています。 その全ての基礎であり，その大きな発展に とって欠くべからざるものが物質科学研究 であるといえます。これまでのたゆまぬ物質科学研究の結果，常識を大きく覆すよう な形態•機能を有した物質•材料が開発され
 てきました。例えば電気を流すプラスチックや，絶対0度付近まで冷 やさなくても抵抗がOとなるような超伝導体等です。また，ナノテク という言葉を耳にされた事があるかと思いますが，ミクロンサイズ よりも微細な加工技術を利用した高性能半導体の研究開発もされ ています。
このような新しい物質•材料を研究開発していくためには，その性質を調べると同時に先進的な研究手法も開発していかなくては なりません。我々の研究室では，粒子線，X線，$~$ 線などと原子核と の相互作用を利用した新しい物質科学研究方法の開発研究および

地下水の滞留時間を溶存ヘリウムガス濃度から推定する方法の開発を行っています。地下水の滞留時間の推定が可能となれば，21世紀に人類が直面する大きな課題の一つである＂水不足＂解決の切 り札として，枯渇や環境破壊を未然に防ぎ計画的に地下水の利用が できると期待されています。

それらを利用した先端的な物質科学の研究をしています。このよう な原子核を利用した測定方法は，周期性を持たないような物質や特定の原子の周辺だけの情報を得る事が可能ですので，これまでの方法では測定出来なかったような物質の性質についての研究が可能となります。そのため，例えば複雑なナノ構造体の特定部分だけ の性質を調べたりする事が可能になりますので，現代の精密物質科学研究にとってますますその重要性がクローズアップされて来てい ます。

原子核から放射された
原子㮦から放射されたと線が吸収さされる様子を調べる
原子核の周ちの電子構楜こついての青報が得られる

放射線生物学研究分野•藤井紀子教授

私達はごく日常的に，利き手，利き足，脑 における左右の機能の違いなど左と右の問題に直面しています。ミクロな世界でも左 と右があります。昨今，サプリメントでブー ムになっているアミノ酸には左手構造（L－ア ミノ酸）と右手構造（D－アミノ酸）がありま すが，私達の身体を構成しているタンパク
質のアミノ酸はL－アミノ酸だけが結合して できたものです。D－アミノ酸は生命の発生以前に排除され，生命体 とは無関係であり，生命が生きている限りL－体からD－体に変わるこ とはないというのが常識でした。しかし，私達はヒトの眼の水晶体の主要タンパク質中のアスパラギン酸（Asp）残基が部位特異的に老化や紫外線照射などによりD－β－Aspへと変化して多量に蓄積して いることを見出し，その反応機構を明らかにしました。同様の反応 は脳の β－アミロイドタンパク，皮虜，動脈壁のエラスチンなど β シー ト構造に富んでいるタンパク質中でも生じておゆ，白内障，アルツハ イマー病，皮膚硬化，動脈硬化症などタンパク質の異常凝集による いわゆるフォールデイング病と関連しています。私達はタンパク質中のAsp残基が左手構造から右手構造に変化してしまうことがきっ かけとなってタンパク質の異常凝集が始まるのではないかと考え，

ASKレグロート．E

平成18年4月1日（土）に毎年恒例の原子炬実験所一般公開を実施しました。桜の見頃にはまだまだでしたが，地元熊取町（156名）を中心に370名の方々の参加がありました。
ビデオを使った実験所の研究紹介，所員の案内による施設見学ツアーを行しました。また，科学実験体験コーナー（日本原子力学会関西支部との共催）を設けました。さらに，こ れらと並行に，原子燃料工業株式会社熊取事業所で，実験所に関するパネルの展示と一般公開の案内も行しました。
施設見学コーナーでは，所員がツアーコンダクターとな った少人数グルーブで，炬室，ホットラボ，廃㨀物処理楝の見学をしてもらいました。どのグルーブも専門的なことを含めて熱心に質問し，とても興味深く見学されたようです。
科学実験体験コーナーでは，霧箱や簡易分光器の工作を し，放射䋡の飛跡を実際に目で見たゆ，タンポポやゴム風船 を液体窒素に浸し，液体窒素湿度の世界を体験したりしま した。多くの方が参加され，そこでサイエンスの世界を坦間見た喜びを感じられたようでした。

さらに詳細な研究を進めています。又，同時にこの様な異常タンパ ク質を排除する酵素の研究も行つています。

中性子物質科学研究部門

－助手 喜田昭子（きた あきこ）さんに聞く
喜田昭子さんは蛋白質の構造解析の研究者ですが，このたび，「酸素添加碚素メタビロカテカーゼの結晶撗造解析」「PP1－カリクリン A復合体の結晶構造解析」，新規青色光受容体タンパク質の結晶構造解明」等の研究で，第8回大学婦人拹会守田科学研究還历賞1を受賞しました。この覚は優れた若手女性研究者し贈られる賞です。 ます，で専門の構造生物学について教えてください。
構造生物学とは生体内の分子（主にタンパラ質）の動きを，その形から理解しようとする研究分野です。タンパラ質は，生理現象に直接関わる物質です。20種類のアミノ酸が，遺伝情報に従つて畬状に つながってタンパラ質は出来上がっています。しかし，アミ酸の並 び方だはからでは，タンパク質の動きを理解する事はできません。 それは，タンパラ質は一次元的な鎖としてではなく，三次元的に組み上がった立体構造をとることによってその機能を発揮するからです。鎖犬の並び方では遠くにあったアミノ酸同士が，立体構造では曲が り曲がって隣に配置されていることもよくあります。そのため，構造生物学は国内外で，生命科学の大きな潮流となっています。試験管 の中での実験では分からなかったことが，立体横造から一目で分か
 が見えたときの感動です。（精密化途中で）誰も知らなしい構造を世界で最初に見ているという優越感があります（笑）。
今後どのような蛋白質にターゲットを絞られていますか？
興味深し機能を有する，生化学的に重要なタンパラ質全般につい てですね。特に酵素タンパラ質に嘸味があります。構造生物学の立
 に迫るような研究を続じてい きたいと考えています。趣味は何ですか？
 －

－曻は一 京都大学原子炬実験所の人たち

京都大学大学院工学研究科㙨械物理工学専攻中性子物理工学研究室（福永研究室）佐藤他加志君（博士後期課程 1 年）に聞く原子炉実験所での生活はいかがですか？
私は修士課程 1 年次まで京都で過ごし，修士課程2年次から熊取 での生活を始め，今年で2年目になります。福永研に配属されるま では，放射線というものを取り扱つたことが無く，配属当初はとても
不安でしたが，徹底した管理の下で安全に使用できることがわかり，今では研究活動 を行う上で無くてはならない非常に強力な手段として，積極的に利用しています。また，実験所には個性豊かな人たちが多く，バ一 ベキューなどのイベントも豊富なため，刺激的で充実した毎日を送っています。さら に研究の都合上，日本全国のさまざまな施設において実験などを行うため，いろ いろな土地を訪れることができることも
－○○○○○○
愛知眞出身。

 2006年3月，士䜅程入学。

ASK WORLDレポート． 1 フランス紀行

量子リサイクル工学研究分野•藤井俊行助教授 Ecole Normale Supérieure（高等師範学校）はフランスにお ける最高の高等教育機関であり，パリとリヨンに各2校（理系1校と文系1校），計4校存在します。私はリヨンにある理系校（ENS Lyon） に8ヶ月間湍在し，地球科学の研究室で同位体分別に関する研究を行ってきました。ENS Lyonは1，000人規模の教育機関で（日本 の総合大学は20，000人規模ですよね），入学を許されるのはフラ ンス全国から選抜されたわずか50人／年です。外国人研究者は全校中35人で，日本人は私1人。滞在中に日本語を話す機会はほとん どありませんでした（でもフランス語は上達しませんでした。どうし てだろ）。今日は，私が感じたフランス人像について話したいと思し ます。
フランスの人は日本文化というオリエンタルな文化に対して憧れ を持っているようです。宮崎駿さんのアニメーションや北野武さん の日本映画など，日本のアニメーション，映画，コミックは人気があり ます。また，柔道などの武道についても興味があり，自宅に畳を持つ ている人もいました。だけど日本文化と他アジア文化との区別はつ かないし，日本人と他アジアの人たちとを見分けることも難しいよ うです（しかもすごく広域）。「ラオスのこと知ってるから，日本も．．．」 って言われても困るんだけど．．．。
フランスの人，特にフランス人男性はすごくおしゃべり（日本人か ら見るとそう見える）。昼食時，休想時，エスブレッソを飲みながら，同じテーマについて延々と議論しています。ある友人は，譲っても らう中古車の価格が妥当であるかを，車種，内装，走行距離などの面 から議論してました。ランチタイム1週間ずっとその話題（なんだか幸せだな）。それから，彼らは具体的な数値を出した議論が大好き です。「大阪府の人口は？広さは？」「日本の失業率は？出生率は？」 などなど。中高生時にもっとまじめに社会科を勉強すればよかった

なと思います。でも案ずることなかれ，少々適当に答えても大丈夫（少々 ですよ，少々）。どのような答でも会話は広がり（答えることが大事） その数値を覚えている人はいません，．．．たぶん。
といいかげんなことを書きましたが，フランス人のいいかげんさ はかなりのものです。もちろんこれは「日本人らしさ」に基づいた一方的な見解で，単なる文化の違いにすぎないのですが，その文化 を知らないと傷つくことがあります。何時何処でといった待ち合わ せはまず機能しないし，ドタキャン（死語）も理由がつけば許されま す（マシンタイムやセミナーといったオフィシャルな約束は守ります）自己主張は限りなくわがままに近く，会話は往々にして猥雑。察墨 でおとなしいと思われがちの日本人は，居酒屋にいるくらいのつも で（あくまでもつもりです）付き合うと意外にしつくりときます。
フランスの恋愛事情は「お盛ん」な感じがしますが（実際に学生 の多くは同棲しています），私は決していやらしさを感じることはあ ませんでした。友人のアパートを訪ねても，彼らは普通の新婚夫婦のように暮らしています。何度か友人や友人の彼女の実家で過こ しましたが，相手方の親族との付き合い方は本当に夫婦が帰省して いるような感じでした。
雑多なことを書きましたが，この洼在の最もすばらしかったことは若く有能なフランス人研究者と友達になれたことです。彼らは博士号を取得し，現在アメリカの一流の大学•研究所の博士研究員とし て研究に邁進しています。将来互いに招待しあえるような立派な研究者になること，それが私たちの夢です。

友人の博士号公㯖会に出席して います。ENSの学生は学生時から Nature，Science誌にチャレンジし ている有能な若手ばかりです。ちな みに私が着ているパーカーは，友人 が体育館で見つけた持ち主不明の落としもの。冬服を持っていなかっ たのでブレゼントしてくれました いやはや，なんともいいかげんですね

ASK WORLDレポート． 2

韓国原子炉「HANARO」での研究活動状況中性子応用光学研究分野•川端祐司教授

韓国の研究用原子炉（HANARO：韓国原子力研究所）との国際協力

京都大学研究用原子炉（KUR）が，新燃料を準備するために約2年間休止することになりました。京都大学原子炉実験所は全国共同利用研究所であるため，その休止期間中も全国の研究者の研究に支障を来さないようにできるだけ の努力をしなければなりません。 そこで，それを契機としてより幅広い研究が進展するように，世界有数の高性能研究炉である韓国 のHANAROと協定を結び，KUR の共同利用研究者が韓国で実験研究を行えるようなプロジェクト を平成18年4月から開始しました現在，中性子放射化分析と中性子ラジオグラフィを中心に協力研究を進めています。既に中性子ラ ジオグラフィ分野では，鹿児島県の

古墳（4世紀末から5世紀初頭頃）から発掘された鉄製手斧の中性子CT（コンピュータートモグラフィ）画像が得られており，古文化財 の保存処理や当時の鉄加工技術に関する責重な情報が得られてし ます（（財）元興寺文化財研究所との共同研究）

