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Abstract 
Modern software and associated computing speed allow a better evaluation of data on the hypocenter 
than was feasible even ten years ago. Hubbell, Jones, and Cheka wrote a report in 1969, ABCC 
Technical Report 3-69, which is the source of the Hiroshima hypocenter estimate used in the DS86 
and DS02 dosimetry systems. They made an exhaustive study of all available data at that time and 
they documented all of the available data explicitly in their report, except for data that were 
documented previously in an earlier report, ABCC TR 12-59.  For the present work all of these data 
were entered into spreadsheets. In addition to direct entry of tabular numerical data, data implicit in 
maps and drawings were obtained in numerical form by using the Geographical Information System 
(GIS) to locate them in the map coordinate systems used in DS02. The GIS was also used to check 1) 
the coordinates of measured locations whose identity is established by site names or other such 
information, 2) various hypocenter estimates of the original studies as drawn on maps and figures by 
the original investigators, and 3) various hypocenter estimates of the original studies as given by the 
original investigators in reference to landmarks of known location. Measurement locations could be 
checked against aerial photographs and modern maps using the GIS, with correction if appropriate, 
and estimates of hypocenter location specified above in (2) and (3) could be evaluated in the GIS and 
compared to numerical coordinate values given by the original investigators or cited from other 
sources in ABCC TR 3-69. The raw data from four major studies on which the Hiroshima 
hypocenter estimate of TR 3-69 was primarily based (Kimura and Tajima, Arakawa and Nagaoka, 
Kanai, Woodbury and Mizuki), were extensively analyzed. The least-squares fitting method given by 
Arakawa and Nagaoka in TR 12-59 was augmented to allow for specification of the penumbra effect 
from a fireball of any specified size, and combinatorial methods were used to check the effects of 
various related assumptions on the results of the two major studies (Arakawa and Nagaoka, Kanai) in 
which the authors did not explicitly treat the penumbra issue nor document the sides of the shadow-
casting objects on which they took measurements. A new uncertainty analysis was performed, 
including the definition of a new statistic similar to the one used in TR 3-69, to provide a way to 
relate the information in the data themselves (how close the measured rays come to intersecting at a 
single, common point) to the uncertainty in the input variables (X and Y coordinates of measured 
locations, angles measured) and the resulting uncertainty in the corresponding hypocenter estimate. 
This relationship was elucidated and estimated by numerical simulations of random errors, including 
the simulation of many plausible sets of measurement locations for studies for which the 
measurement locations are not available. A new weighting scheme similar to that suggested by Land 
in TR 3-69 was devised and used to obtain a new hypocenter estimate. In contrast to the work of 
DS02, which used a map alignment to define the location in new city map coordinates of the 
hypocenter determined in U.S. Army map coordinates by Hubbell, Jones, and Cheka, this more 
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fundamental work completely re-analyzes the data used by Hubbell, Jones, and Cheka. Initial 
indications are that the new estimate may be about 17 m south of their estimate. 
 

Introduction 
For almost 20 years, dosimetry working groups (RERF 1987) have used an estimate of the atomic 

bomb hypocenter location in Hiroshima that was produced in 1969 by a thorough review of earlier studies. 
This review was conducted by scientists of the U.S. Oak Ridge National Laboratory and published in an 
ABCC (Atomic Bomb Casualty Commission) Technical Report, No. 3-69 (Hubbell et al. 1969). A major 
strength of ABCC TR 3-69 is that it did an excellent job of preserving all of the detailed information that 
was available in 1969 from earlier studies. ABCC TR 3-69 and an earlier ABCC report produced in 1959, 
No. 12-59 (Arakawa and Nagaoka 1959, Woodbury and Mizuki 1959), taken together, contain all of the 
raw data, consisting of measurement locations and measured angles to the hypocenter at those locations, 
for four major studies that were the main basis of the estimate produced in ABCC TR 3-69. Although the 
joint binational working group that prepared the DS02 dosimetry system conducted a major reanalysis of 
map issues using modern Geographical Information System (GIS) software, time and resource constraints 
compelled them to use the hypocenter estimate of 1969, as originally defined on the 1945 U.S. Army map 
of Hiroshima, for which they determined a new estimate of the corresponding location on new city maps 
produced by the City of Hiroshima in 1979. This transfer of the ABCC TR 3-69 hypocenter to more 
modern maps was based strictly on the alignment of the two sets of maps. That is, DS02 did not attempt to 
re-analyze the original raw data(Young and Kerr 2004). 

The possibility of re-analyzing the raw data of ABCC TR’s 12-59 and 3-69 is interesting in the first 
place because of the great progress in computerized computation and related information systems since the 
1960’s. Contemporary Geographical Information Systems (GIS’s) allow maps and aerial photographs to 
be combined in ways that enable more accurate estimation of the map coordinates of sites where angles to 
the hypocenter were measured (Young and Kerr 2004). Modern computer software in the form of 
spreadsheets and programming languages allows greatly facilitated computation, and the speed of modern 
computers allows much larger calculations for purposes such as numerical simulation of statistical 
problems. Furthermore, statistical methods such as linear regression have been extensively developed and 
elaborated in the last several decades (Draper and Smith 1981). 

In addition to the advantages of modern methods and computers, a careful reading of ABCC TR’s 
12-59 and 3-69 reveals that a number of problems related to analyzing and interpreting the original raw 
data were never resolved. This paper will focus on solutions to three of the most prominent of those 
problems: 

1. Devising a method to analyze the data of measurers who failed to record the sides of shadow-
casting objects on which they made measurements of the angles of the edges of shadows from the 
bomb’s thermal radiation (the penumbra problem), 

2. Devising a statistic that uses the information implicit in the measurements of such angles for a 
given study, and a method of estimating the distribution of that statistic, so that it can be used in 
turn to estimate the uncertainty of the resulting hypocenter estimate of that study (the 
measurement uncertainty problem), and 

3. Using the uncertainty estimates so derived to construct an appropriate method of statistical 
weighting to be used in combining the results of the original studies considered in ABCC TR 3-69 
(the statistical weighting problem). 

We take the solution proposed here for the penumbra problem and apply it to the data of Kanai, 
which was an unresolved enigma for the authors of ABCC TR 3-69. We take the solution proposed for the 



 84

measurement uncertainty problem and illustrate it using the data of Arakawa and Nagaoka (Arakawa and 
Nagaoka 1959), which consist of 1178 total measurements at 37 different sites and represent by far the 
largest recorded data set of the four major studies used in ABCC TR 3-69. In both of these cases we also 
give the results of using the GIS to re-evaluate the coordinates of the sites where the measurements were 
made. Finally, we use the solution to the third problem to combine the resulting estimates of the 
hypocenter location from the data of Kanai and those of Arakawa and Nagaoka with similarly derived 
estimates for the other studies considered in ABCC TR 3-69, to produce a new initial estimate of the 
hypocenter location. 
 
Methods 
The Penumbra Problem 

Data collected by measuring shadows created by the thermal radiation from the bomb comprise 
almost all of the information on which the authors of ABCC TR 3-69, and most reports cited by them, 
based their estimates of the location of the Hiroshima hypocenter. The source of thermal radiation, which 
is identifiable with the “fireball,” was substantial in size, a fact remarked upon repeatedly by Hubbell, 
Jones and Cheka in ABCC TR 3-69. As a result, shadows preserved by the alteration of surfaces by the 
thermal radiation from the fireball had a penumbra, as shown in Figure 1. Because investigators naturally 
tried to measure the outer edge of the penumbra, where it blends into the area of no shadow, they 
measured the angle to one side of the fireball that constitutes the source of radiation producing the shadow, 
and not the center of the source. A measurement on one side of the shadow-casting object corresponds to 
one side of the fireball, and a measurement on the other side of the object corresponds to the other side of 
the fireball. 

The investigators performing two of the major studies considered in ABCC TR 3-69 (Kimura and 
Tajima, Woodbury and Mizuki) measured shadows on both sides of an object and took a ray halfway 

Figure 1. Shadows from a source of non-negligible extent create an area of partial shadow, the 
penumbra, adjacent to the full shadow, or umbra 
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between the rays so measured as being a ray to the center of the fireball. However, in the other two major 
studies (Kanai, Arakawa and Nagaoka), there is no information in ABCC TR 12-59 or ABCC TR 3-69 
about which sides of the shadow-casting objects were measured, nor is there information to establish 
whether or not a procedure to obtain a central ray was followed. Treatment of the penumbra in two of the 
four major original studies was therefore a problematic issue in the writing of ABCC TR 3-69 and has 
remained an unresolved question to the present day.  

To attack this problem we began by choosing the method of solving for a hypocenter estimate that 
was originally proposed by Arakawa and Nagaoka in Part I of ABCC TR 12-59, and appears to give good 
results. (That is, the solutions obtained by this method, unlike the solutions obtained by the methods 
suggested by Woodbury and Mizuki in Part II of ABCC TR 12-59, appear by visual inspection of plots to 
be central to the measured rays. This issue will be documented further in future work.) We follow the 
authors’ original nomenclature, which is illustrated in Figure 2, taken from their work (Arakawa and 
Nagaoka 1959). That is, (x,y) are the coordinates of the hypocenter, (xi,yi) are the coordinates of the 
location where the ith measurement was made, the measured azimuthal angle αi is specified counter-
clockwise from grid east, and di is the perpendicular (and shortest) distance from the ray to the hypocenter. 
Based on the simple but elegant geometry that Arakawa and Nagaoka illustrated in Fig. 2, they observed 
that  

)1(sin)(cos)( iiiii xxyyACABd αα −−−=−=  

(i.e., ABxy and ACxiyi are similar right triangles, so that the length of segment AC is given by sinαi = 

AC/Axiyi = AC/(x – xi), where we have used “Axiyi” to denote the length of the segment from the point 
labeled A to (xi,yi), etc.). They suggested finding a hypocenter estimate (x,y) that minimizes the weighted 
sum of squares of the di, which they denoted as Λ, by setting the first derivatives equal to zero, i.e.,  
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Figure 2. Notation for measurements parameterized as X-Y coordinates of the measurement 
location and azimuthal angle (reproduced from Arakawa and Nagaoka (Arakawa and Nagaoka 
1959) 
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Here m is the number of measured locations, ni is the number of measurements at the ith location, and the 
weighting reflects the presumed dependence of the variance of, e.g., the mean of n measurements, on n.  
With some additional algebra (shown below for the case in which we assume a fireball of some fixed 
radius), this results in a solution  
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It is easy to rewrite and solve the equations of Arakawa and Nagaoka for optimization to a circle of some 
fixed radius r about the hypocenter. In that case we do not want the di to be as small as possible, but rather 
as close as possible to some specified effective fireball radius r. Using the same notation, we write 
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wherein the sign of the term for r depends on which side of the shadow-casting object was measured, as 
discussed further below. (Consistent with the notation of Arakawa and Nagaoka, we have omitted the 
limits on the summations for simplicity; they are all “i = 1 to m.”) 
Then taking the first partial derivatives with respect to x and y gives  
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and setting them equal to zero gives 
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which expand to  
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Abbreviating the summations for the remaining algebra, we can write 
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Similarly, 
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wherein we have kept A through S exactly as defined by Arakawa and Nagaoka, and we have added the 
expressions T and U, in which we must remember that the signs of the individual terms depend on which 
side of the shadow-casting object was measured. The correct sign is obtained by the rule that, if the angle 
is measured counterclockwise from due E, reverse (to negative) the signs for terms corresponding to a ray 
that is drawn to the left side of the fireball, i.e., the ray with the larger angle of the two to either side of the 
fireball. Looking away from the hypocenter toward the point of measurement, this is the shadow on the 
left side of the structure casting the shadow: the side indicated by the arrow in Fig. 1. 

When only one of two rays has been measured, and one knows not which, the problem is to decide 
which sign to associate with each term in T and U. In the case of only two rays, the correct decision is 
obvious, because only one solution lies in the correct direction with respect to the directions of the rays. 
For larger numbers of rays, the correct solution is not necessarily obvious. For a single measurement at 
each of m locations, there are 2m possible solutions, defined by changing or not changing the sign of each 
term in T, where each term in U has the same sign as the corresponding term in T. For numbers of 
locations around 18 to 20 or so, it is quite feasible to exhaustively check each of these possible 
combinations to see which one has the smallest residual sum of squared distances between the rays and the 
circle representing the effective fireball radius. This provides a truly optimal solution in cases lacking the 
side-measured information, and this method can be used to learn something about the individual data sets, 
as shown in the following analysis for the data of Kanai.  

The method that was devised for exhaustive checking was to  
• use the digits of a binary number between 0 and 2m+1-1, including all of the leading zeros to the 

full width of m characters,  
• increment the number from 0 to 2m+1-1 in steps of 1, and  
• for each such number, equate the sign of each term with the 1 or 0 of the corresponding digit.  

The terms A, B, C, P, Q, R, and S do not have to be recalculated for these combinations, only the terms T 
and U need be recalculated. In this code, as in the code for numerical simulation of random errors 
described below, the results of the code for representative sets of input values were extensively cross-
checked against spreadsheet calculations of the same solutions to assure correct results. 

The situation is illustrated here with a simple example. Figure 3 shows measured rays for both sides 
of the shadow-casting objects at three hypothetical locations, using the grid coordinates of the newer city 
map of Hiroshima for illustration. In Figure 4, we assume as an example that all measurements were 
actually made to the left side of the fireball. As noted above, the correct solution for this case is obtained 
by using a negative sign for all of the terms T and U described above, which we designate “L L L“ in the 
figure legend and in Table 1.  

In Figure 4 we show all of the solutions that would be calculated for the hypocenter location for 
various combinations of the sides that we might assume were measured at each location. Although it is 
clear that the correct combination, “L L L,” is tangent to all three rays, it also appears that the combination 
“R R L,” i.e., the solution based on the assumption that the first two locations were measured to the right 
side of the fireball and the third to the left, is tangent to all three rays. In fact, “R R L“ is actually not quite 
a perfect fit, but the difference is too small to be visually apparent on this plot. This ambiguity arises 
because the first and second points are not well separated in terms of their angular distribution about the 
hypocenter. This problem should not arise in the applications of interest, which have larger numbers of 
observed rays with a much more homogeneous angular distribution. However, it is clear from even this 
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small example that picking a correct combination by visual inspection is impossible, even if errors in the 
measured angles and coordinates of the measurement sites are negligible and we know the exact size of 
the effective fireball radius. 

Simulated Triangulation with Penumbra:
3 Hypothetical Measured Locations, Both Sides
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Figure 3. A set of hypothetical locations and the rays that would be measured (without 
error) to the sides of a 100-m effective fireball radius.

Simulated Triangulation with Penumbra:
True Sides Measured: All Left Sides

Solutions for All Possible Assumed Combinations
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Figure 4. Three measured rays and the hypocenter estimates that would be obtained
for all possible combinations of sides assumed to have been measured. 
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In Table 1, we check the sum of squared perpendicular distances in m from the three rays to the 
fireball for all of the possible combinations of sides assumed to have been measured, for fireball radii in 
10-m increments from 10 m to 120 m. That is, for each set of assumptions about the combination of sides 
measured and the fireball radius, we calculate the minimum sum of squared perpendicular distances, 
which corresponds to the hypocenter location that we would calculate under those assumptions. In 
addition to the perfect fit for the the correct combination “L L L,” it is notable that the misleading 
combination “R R L,” “ fits almost perfectly if the fireball radius is assumed to be 120 m rather than 100 
m. It is also apparent from the table that a very small fireball of radius 10 m fits very well for the 
combination “R L L,” although not perfectly. (This possible solution is not shown on the plot in Fig. 4, but 
it fits into the triangle formed by the intersection of the three measured rays.) Again, such ambiguity 
should not be encountered in practice if the number of measurements is > 2 and the measurement locations 
have a reasonably homogeneous distribution of azimuthal angle about the hypocenter.  

Now we apply this method to the data of Kanai, shown in Table 2, which include measurements at 
14 locations. The locations are well established. They are named in Table 3 of ABCC TR 3-69, along with 
the authors’ estimates of their U.S. Army map coordinates, and they are shown on a reproduction of 

Table 1. The minimum sum of squared perpendicular distances for each set of assumptions about 
the fireball radius and the sides measured.  

 Assumed combination of sides measured 
Assumed 

Fireball 
radius, m 

 
L L L 

 
 L L R 

 
L R L 

 
L R R 

 
R L L 

 
R L R 

 
R R L 

 
R R R

10 266.4 387.7 923.7 1139.8 6.3 34.6 275.0 398.0
20 210.5 451.4 1818.8 2438.8 171.9 40.6 225.8 473.7
30 161.2 519.9 3014.3 4226.0 825.7 347.1 181.5 555.9
40 118.4 593.2 4510.2 6501.4 1967.6 953.9 142.0 644.7
50 82.2 671.3 6306.5 9265.1 3597.8 1861.1 107.4 740.1
60 52.6 754.3 8403.2 12516.9 5716.2 3068.7 77.6 842.1
70 29.6 842.1 10800.2 16256.9 8322.8 4576.6 52.6 950.6
80 13.2 934.8 13497.7 20485.1 11417.5 6385.0 32.5 1065.8
90 3.3 1032.3 16495.5 25201.6 15000.5 8493.7 17.2 1187.5

100 0.0 1134.6 19793.7 30406.2 19071.7 10902.9 6.7 1315.8
110 3.3 1241.7 23392.3 36099.0 23631.1 13612.4 1.1 1450.6
120 13.2 1353.7 27291.3 42280.0 28678.7 16622.3 0.3 1592.1

Table 2. The data of Kanai. 
GIS-Estimated New 

City Map Coordinates
Kanai azimuthal 

angle Kanai 
Point No. Location 

Y, km X, km ccw from grid E, deg
1 Branch Office, Sanwa Bank 26.821 -178.485 193 
7 Branch, Chiyoda Insurance Co. 26.852 -178.380 221 
10 Branch, Sumitomo Bank 26.966 -178.453 194 
13 Seiyoken 26.912 -178.656 141 
14 Industrial Museum, S side 26.617 -178.317 326 
17 Chamber of Commerce and Industry 26.615 -178.182 299 
20 Fukuro-machi Primary School 27.035 -178.733 138 
23 Hiroshima Central Telephone Bureau 27.136 -178.773 131 
24 Branch Office, Yasuda Bank 27.201 -178.614 172 
25 Honkawa Primary School 26.357 -178.214 332 
29 Chugoku Electric Co. 26.813 -179.085 98 
30 Bank of Commerce and Industry Assn 27.337 -178.470 188 
35 Hiroshima City Office 26.719 -179.436 454 
36 Shin-ohashi Bridge 26.208 -178.725 391 
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Kanai’s original map in Figure 1 of Appendix 3 of ABCC TR 3-69. For this study, the new city map 
coordinates of these locations were evaluated using the GIS, giving the values in Table 2. This corrects a 
substantial distortion in the map originally used by Kanai. 

The measured azimuthal angles of the shadows are given with respect to magnetic north in Table 3 
of ABCC TR 3-69. To restate them with respect to grid east of the newer city maps, we first noted that, 
according to the declination diagram on the U.S. Army map, magnetic north in Hiroshima in 1945 was 5 
deg. 41 min. = 5.683 deg. west of true north. We also calculated from the equations of the Geographical 
Survey Institute, which relate grid coordinates of the new city map to longitude and latitude in the Tokyo 
datum (Young and Kerr 2004), that grid north of the new city maps in the Hiroshima area is about 0.2 deg. 
east of true north. We assumed that the direction “true north” in the Tokyo datum used for the new city 
maps was the same as “true north” in the datum used for the U.S. Army maps. Thus, to convert from 
angles specified with respect to 1945 magnetic north to angles specified with respect to new city map grid 
east, we converted the angles given by Table 3 of ABCC TR 3-69 to angles stated counter clockwise 
(ccw) from 1945 magnetic north and then added 5.683 + 0.2 + 90 deg. to obtain angles stated ccw from 
new city map grid east. 

The results for the analysis of Kanai’s data are given in Table 3. For each effective fireball radius 
checked, in increments of 10 m, the best and next-best combination of sides measured are shown, along 
with their sums of squared perpendicular distances. The best combination is for a radius of 50 m and has 
three sites with measurements to the right side of the fireball and eleven with measurements to the left side 
of the fireball. This reduces the sum of squares considerably from the assumption of no fireball effect on 
the measured angles (equivalent to assuming that all of the reported angles were actually for central rays) 
from 0.0429 km2 to 0.0114 km2. The mean absolute perpendicular distance from measured rays to the 
hypocenter is approximately 47 m for the solution based on the assumption of no fireball effect, whereas 
the mean absolute perpendicular distance from the measured rays to the effective fireball radius is about 
22 m for the best solution with a fireball effect. The hypocenter estimate for the combination 
LLLLLLRRLLRLLL with a 50-m effective fireball radius is at (27.714, -178.465), about 34 m west and 
12 m north of the solution for no assumed fireball (equivalent to assuming that all of the reported angles 
were actually for central rays), which is at (27.748, -178.477). These solutions are shown in relation to the 
measured rays in Figure 5. The three shadow lines that the optimal fireball-effect solution suggests were 
measured to the right side of the fireball are shown as dotted lines.  
 
 

Table 3. Results for Kanai data. 
 Best combination for radius Next to best combination for 

radius 
Radius, m Combination SS, km2 Combination SS, km2 

10 LRLLLLRRLLLLLL 0.0313 LRLLLLRRLLRLLL 0.0320 
20 LRLLLLRRLLLLLL 0.0225 LRLLLLRRLLRLLL 0.0236 
30 LRLLLLRRLLLLLL 0.0164 LRLLLLRRLLRLLL 0.0180 
40 LLLLLLRRLLLLLL 0.0130 LLLLLLRRLLRLLL 0.0130 
50 LLLLLLRRLLRLLL 0.0114 LRLLLLLRLLLLLL 0.0125 
60 LLLLLLRRLLRLLL 0.0120 LRLLLLLRLLLLLL 0.0146 
70 LLLLLLRRLLRLLL 0.0150 LLLRLLRRLLRLLL 0.0179 
80 LLLLLLRRLLRLLL 0.0202 LLLLLLRRLLRLLR 0.0225 
90 LLLRLLRRLLRLRR 0.0225 RRRRLLRRRLLRLL 0.0296 
100 LLLRLLRRLLRLRR 0.0226 RRRRLLRRRLLRLL 0.0306 
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Because the optimal solution suggested that only three shadows were measured to the right side of 
the fireball, we considered the possibility that all sites were measured to the left side of the fireball, and 
that the situation of those three lines is due to error. The solution with all measurements to the left of the 
fireball has a minimum sum of squared perpendicular distances for a radius of 40 m, and its solution is 
very close to the solution for no fireball effect, as shown in Fig. 5. Its sum of squared perpendicular 
distances is 0.0274 km2, and its mean absolute perpendicular distance from the measured rays to the 
effective fireball radius is about 39 m. This is a small improvement over the assumption of no fireball 
effect, but not nearly as good as the optimal combination. We also considered the influence of one 
particular measurement, at location No. 23, the Hiroshima Central Telephone Office. It has the largest 
error in all of the solutions discussed here, and appears quite discordant with the other lines. However, 
when this particular observation is omitted, there is little effect on the solutions discussed above. On 
balance, we feel that the solution for the combination LLLLLLRRLLRLLL with a 50-m effective fireball 
radius is the best one and should be used in the combined estimate. It is also closer to the estimates of the 
three other major studies than the other two estimates discussed above. 

The same method was used to analyze the data of Arakawa and Nagaoka. Those data are more 
complicated, as many replicate measurements were made at most of the sites measured. The method 
described above was applied to the average measured angle for each site, based on analyses that are too 
extensive to include here but will be included in a future publication. That is, it appeared from detailed 
analyses that all of the measurements at a given site were made on the same side of the shadow-casting 
objects. For example, when the measured angles for each site were plotted, there was no evidence of a 
bimodal distribution or enough angular separation to suggest that both sides were measured.  

As with the Kanai data, the coordinates of the measurement locations were re-evaluated for this 
study using the GIS. Because a total of 37 sites were measured, it was not practical to exhaustively 
evaluate all possible combinations of sides measured; however, because the numbers of measurements per 
site were very unevenly distributed, the vast majority of measurements could be included. The first 16 
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sites with the most measurements per site, which include 1104 of the 1178 measurements, were subjected 
to the full optimization. The optimal solution was for all except one (location No. 6) of the 20 sites being 
measured to the right side of the fireball. This is clearly seen in Figure 6, in which the shadow line for 
location No. 6 is shown as a dotted line. For several reasons, we believe it is most plausible that the 
measurements at this site were actually made to the right of the fireball, and that the result obtained from 
the optimization is due to the error in the measurements. The difference between the two solutions is small, 
as the combination chosen here, with all measurements to the right side of the fireball, is at (744.291, 
1261.686) in U.S. Army map coordinates, whereas the solution assuming that location No. 6 was 
measured to the left side of the fireball is at (744.285, 1261.682). 
 
The Measurement Uncertainty Problem 

Because of the errors in measured angles and estimates of the coordinates of locations where 
measurements were made, there is uncertainty in the hypocenter estimate obtained for each set of data, 
which is related to the quality of the data in that particular study. We need to evaluate this uncertainty 
quantitatively in order to properly combine the results of studies with different qualities into a single 
overall estimate of the hypocenter location, as well as to estimate the uncertainty of that combined 
estimate. There are various ways to approach this problem. One way, which is explored here, is to start 
with a full probability model of the errors in the input variables and then determine the corresponding 
error distribution to be expected in the solutions. Another way, which is being considered for future work, 
is to use a resampling method such as the bootstrap method to evaluate the uncertainty in the solutions. 

We do not have ideal information on the uncertainty in the input data for most of the studies, but we 
do have at least rough estimates of the uncertainty in the measured angles, which were part of what 
Hubbell et al used to weight their overall estimate, and there are some ways to get at least a rough estimate 
of the accuracy in specifying the coordinates of the measurement locations that investigators would have 
used in making their original estimates. More importantly, we can give fairly good estimates of the 
uncertainty in location coordinates for the major studies that are re-analyzed here, because we can relate 
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them to known sites on the maps and aerial photographs in most cases. In addition, another thing we have 
for the major studies is the Λ - the sum of squares of perpendicular distances from the measured rays to 
the solution point constituting the hypocenter estimate. This is a very useful item in view of the insightful 
observation, as suggested by Hubbell et al and undoubtedly others before them, that the size of the Λ must 
be statistically related to the uncertainty of that estimate. That is, the closer the rays come to converging in 
a single point at which all of them intersect, the more confidence we can have in the accuracy of the 
solution.  

The approach used here, then, is to seek to establish a statistical relationship between the 
uncertainty in the input data (xi, yi, αi) of each original study and the uncertainty in both (a) the Λ, and (b) 
the solution )ˆ,ˆ( yx . The uncertainty in the input data (xi, yi, αi) would be characterized by a fully-specified 

joint probability density function such as f(xi, yi, αi; µx, µy, µα, σx, σy, σα). Given the form of f(xi, yi, αi; µx, 
µy, µα, σx, σy, σα), the probability distribution of Λ, which determines its uncertainty, depends on the µx, 
µy, µα, σx, σy, σα  via equation (1) above, and the probability distribution of the hypocenter estimate )ˆ,ˆ( yx  

depends on the µx, µy, µα, σx, σy, σα  via equation (3)  or (19) above, as applicable. 
In this work, because of the mathematical difficulty of establishing this relationship in analytical 

form, we have chosen to use numerical simulation of random errors. We will make simple assumptions 
about f(xi, yi, αi; µx, µy, µα, σx, σy, σα) and rely on estimating the key relationships by simulatiing of 
random errors generated from f(xi, yi, αi; µx, µy, µα, σx, σy, σα). We will use this relationship, along with 
the observed value of Λ and other information available from each original study, to make an estimate of 
the uncertainty in the input data (xi, yi, αi) of that study. Then we use the same statistical relationship to 
estimate the uncertainty in the hypocenter estimate for that study. The relationships involved are 
illustrated in Fig. 7 and are further explained below.  

),,;,,( ασσσα YXYXf

σyXσαXσxX (xi, yi, αi)

Λ )ˆ,ˆvar( yx Λ

other  
informatio

(xi, yi, αi) 

)ˆ,ˆ(var yx
∧

ασσσ ˆ,ˆ,ˆ yx

Figure 7. Relationships among quantities involved in estimating the uncertainty of the
hypocenter estimates of individual studies. 
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Uncertainty in Input Values 
 
Measured Angle 

The assumption adopted for this work is that the errors in measured angles are approximately 
normally distributed. Clearly this can only be an approximation, because the normal distribution is defined 
on the entire set of real numbers, from -∞ to +∞, whereas the angles can only extend from -π (-180°) to +π 
(+180°). But with angle standard deviations on the order of even 10°, about the largest likely to be 
considered here, the tales of the normal distribution that cannot be accommodated contain  infinitesimal 
mass.  

The most complete information, by far, on the reproducibility of measured angles of shadows is 
given by the data of Arakawa and Nagaoka, as reported in Part I of ABCC TR 12-59. They comprise 1178 
measurements, with as many as 219 measurements at a single location. These data thus represent a very 
important basis for estimating σα. 

The sample standard deviations of the recorded angles for the 18 sites including the vast majority of 
the measurements are shown in Table 4, along with the approximate distance of the site from the 
hypocenter. 
 
Coordinates of Locations Where Measurements Were Made 

The locations given by Arakawa and Nagaoka are documented with both specific site names and 
U.S. Army map coordinates. These could be checked on georeferenced aerial photographs and the new 
city map for almost all sites, including the 18 sites with the most measurements as shown in Table 4. The 
data obtained by checking these sites, including consideration of the information given in ABCC TR 3-69 
about errors at several of them, is shown in Table 5. 

The information on the most measured sites was good enough to specify U.S. Army map 
coordinates correct to an error standard deviation in each coordinate no more than 15 to 20 m in all cases.  
 

 

Table 4: Summary data on measured angles of Arakawa and Nagaoka (18 most-measured sites) 
Site No. Ground distance, 

m 
# of 
observations 

sample s.d. of 
angles measured 

estimated s.d. of 
mean angle for site 

1 851 7 1.57 0.59 
2 418 181 7.81 0.58 
3 215 93 3.08 0.32 
4 313 214 6.73 0.73 
5 378 35 3.95 0.43 
6 105 30 8.74 1.59 
7 387 101 3.26 0.60 
8 340 39 3.21 0.59 
9 412 91 6.32 1.15 

10 432 115 6.13 1.12 
11 612 14 4.04 0.74 
12 605 85 2.52 0.46 
13 455 50 6.37 1.16 
14 258 18 3.74 0.68 
15 524 16 6.77 1.24 
16 321 16 3.58 0.65 
17 884 11 1.03 0.19 
18 387 11 3.89 0.71 
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Results of Random Error Simulation 

A number of plots like the one shown in Figure 8, for various assumed error s.d.’s in the 
measurement location coordinates, were generated by random error simulation and evaluated. The 
observed standard deviation of the perpendicular distances from the measured rays to the hypocenter 
estimate noted above, 16.8 m, is shown as a horizontal line in red. Based on the trend in the simulated s.d. 
of the same quantity, as shown by the triangles on the plot, it was decided to assign error s.d.’s of 2.3 deg 
and 10 m, respectively, for measured angle and measurement location coordinates, which are quite 
consistent with the information from other sources noted above. 
 
  

Table 5. Measurement locations used by Arakawa and Nagaoka in ABCC TR 12-59 
Site 
No. Site Name X Y 

avg angle, 
deg cw from 

mag N 

deg ccw 
from Army 

grid E 
rad ccw 

from grid E

1 Shokaku Temple 745.208 1261.905 259 185.3 3.234 
2 Joen Temple 744 1261.36 47 37.3 0.651 
3 Sensho Temple 744.41 1261.5 332 112.3 1.960 
4 Jisen Temple 743.965 1261.628 85 359.3 6.271 
5 Keizo Temple 744.076 1261.358 34 50.3 0.878 
6 Sairen Temple 744.21 1261.78 127 317.3 5.538 
7 Myoren Temple 744.588 1261.398 317 127.3 2.222 
8 Shojun Temple 744.66 1261.62 283 161.3 2.816 
9 Kokutai Temple 744.47 1261.29 338 106.3 1.856 
10 Myoho Temple 743.93 1261.41 55 29.3 0.512 
11 Ryuko Temple 744.24 1261.04 4 80.3 1.402 
12 Jokaku Temple 743.66 1261.53 77 7.3 0.128 
13 Dempuku Temple 743.877 1261.442 58 26.3 0.459 
14 Yasuda Life Insurance Co. 744.55 1261.58 295 149.3 2.606 
15 Yasuda Bank 744.82 1261.47 296 148.3 2.589 
16 Fukoku Life Insurance Co. 744.5 1261.42 326 118.3 2.065 
17 Yorozuyo Bridge 743.85 1260.85 30 54.3 0.948 
18 Nippon Bank 744.47 1261.32 340 104.3 1.821 
19 Honkawa Grade School 743.941 1261.872 118 326.3 5.695 
20 Daiichi Bank 744.41 1261.64 316 128.3 2.240 
21 Chiyoda Life Insurance Co. 744.44 1261.72 261 183.3 3.199 
22 Gokoku Shrine, outer gate 744.31 1261.91 178 266.3 4.648 
23 Kokutai Temple 744.45 1261.17 345 99.3 1.733 
24 Seiryu Temple 744.94 1261.6 286 158.3 2.763 
25 Sorazaya Shrine 743.96 1262.29 156 288.3 5.032 
26 Aioi Bridge, west end 744.02 1261.98 145 299.3 5.224 
27 Aioi Bridge, east end 744.12 1261.96 153 291.3 5.084 
28 Aioi Bridge, south end 744.05 1261.87 123 321.3 5.608 
29 Kiyozumi Temple 743.79 1262.05 126 318.3 5.556 
30 Sanwa Bank 744.4 1261.61 335 109.3 1.908 

31 Monument (West Parade 
Ground) 744.5 1261.88 230 214.3 3.741 

32 West Reconstruction Board 744.36 1261.9 210 234.3 4.090 
33 Bank Club 744.37 1261.52 355 89.3 1.559 
34 Nippon Life Insurance Co. 744.38 1261.56 330 114.3 1.995 
35 Honkawa Geibi Bank 743.8 1261.63 80 4.3 0.075 
36 Osaka Bank 744.57 1261.64 286 158.3 2.763 
37 Court 744.94 1261.05 320 124.3 2.170 
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One of the virtues of random error simulation as used here is that it includes the effect of 

asymmetrical angular dispersion of measurement locations about the presumed solution. The uncertainties 
for the two coordinates of the hypocenter, shown as diamonds and squares in Fig. 8, are virtually identical 
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Figure 8. Results of random error simulation for the data of Arakawa and Nagaoka.
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Figure 9. Simulation results for the data of Kimura and Tajima. 
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because of the relative radial symmetry of the angular dispersion of measurement locations. Even though 
there are no locations directly north of the hypocenter area in Arakawa and Nagaoka’s data, as shown in 
Fig. 7, there is enough coverage of radial angles to avoid asymmetry in the coordinate uncertainty. On the 
other hand, the simulation results for the measurement locations of Kimura and Tajima, shown in Figure 9, 
reflect the fact that there were relatively few measurement locations, as shown in Figure 10, and most of 
them were north or south of the hypocenter area, so that the uncertainty in the Y coordinate is greater 
because there is less angular difference for a unit difference in hypocenter location on the Y axis than on 
the X axis. (The observations shown as dotted arrows entering the diagram from outside its depicted area 
were not used because they appeared inconsistent with the reported result of Kimura and Tajima when the 
named measurement locations were evaluated with the GIS, and in the case of the “Gas Tank,” the 
location was unknown.) 

The most important unsolved problem in this regard has to do with the numerous small studies 
included by the authors of ABCC TR 3-69 in their tabulation and their resulting estimates, which they 
estimated to have only three measurement locations. They have no real documentation of these studies 
except for their resulting hypocenter estimates. Most importantly, they have no documentation of the 
locations measured. Simulations to date have indicated that, even when very favorable constraints are 
imposed on a random selection of measurement locations to avoid any two of them being close to having 
the same direction from the simulated hypocenter, modest-sized error standard deviations in the simulated 
errors of the measured angles result in very large errors in the hypocenter estimate with non-negligible 
probability: the empirical distribution of the simulated errors has “heavy upper tail.” As a result, the 
simulation estimates of the uncertainty in the hypocenter estimates of such studies are unstable, even at 

Figure 10. The measurement locations of Kimura and Tajima, from ABCC TR 3-69.
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surprisingly large numbers of trials. Although very large number of trials and additional work on 
simulation may improve the related estimates of uncertainty for such three-location studies, this is an area 
that requires more statistical research if these small studies are to be considered.   
The Statistical Weighting Problem 

Although the authors of ABCC TR 3-69 gave tabulated values of estimated error standard 
deviations in the coordinates for the locations where measurements were made, for all of the individual 
studies in their Table 1, they did not use them in their weighting for combining the results of those 
individual studies. They chose instead to estimate the sample standard deviation of the di’s (perpendicular 
distances from measured rays to hypocenter estimate) for the various studies, in combination with the 
estimated standard deviation of the measured angles. They were able to calculate this quantity for the four 
major studies, but they generally had no quantitative basis for estimating it for the studies lacking recorded 
measurement data. (They quote a value for the USSBS study that is not footnoted as “Assumed by the 
present authors,” as are the values given in their Table 1 for other studies without measurement data, but 
they do not provide a source or a basis for this estimate.) Thus, for studies lacking the original data, they 
based their weights partly on a quantity that depends on the uncertainties in the measured data in a rather 
complicated way, which they did not determine, and partly on the uncertainties of the measured data 

themselves. They wrote their formula for weights as 
ii

i
i

N
w

θσ ∆
= , where Ni is the number of 

measurements in the ith study, σi is an estimate of the standard deviation of the dj’s of the ith study, and 

iθ∆ is an estimate of the error standard deviations in the measured angles of the ith study. No statistical 

derivation is given, and this formula illogically combines uncertainties in an input variable with an 
uncertainty in an intermediate variable that is influenced by that input variable. 

A better and much more obvious method is to estimate the hypocenter coordinates X and Y using 
weighted sums of the individual study results, with the weights being the inverses of the estimated 
variances of the X and Y coordinates of the individual estimates, i.e.,  
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This is a component-wise application of a standard statistical method used for weighted means of scalar 
quantities, as suggested by Land in Appendix 1 of ABCC TR 3-69 and in many other texts and references 
such as, e.g., Bevington and Robinson’s popular book Data Reduction and Error Analysis for the Physical 
Sciences (Bevington and Robinson 1992). As Kerr and Solomon observed in their report on the Nagasaki 
hypocenter,  if Nj

jj yx ,...,1ˆˆ ∈∀= σσ , it is equivalent to minimizing the weighted sum of squares of the 

Euclidean distances from the combined estimate to the individual estimates, but this method further 
corrects for situations in which this equality does not apply. Because the 

jj yx and σσ ˆˆ are based on all 

relevant parameters of the individual studies, there is no weighting at this level by the numbers of 
measurements in each study. 

One potential shortcoming of this method is that it does not consider possible covariance between 
errors in the X and Y coordinates of the hypocenter estimates of individual studies. Thus, it may be 
necessary to adjust the formulae for covariance. 

These methods were used to re-evaluate the hypocenter estimates of the four major studies used in 
ABCC TR 3-69, and to produce rough preliminary estimates of the uncertainties in all of the individual 
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study results considered in that report. The results are given in Table 6 and Figure 11. The listing 
suggested by Land in Appendix 1 to ABCC TR 3-69 is used here to avoid the redundancies in the more 
complete listing given in that report by Hubbell, Jones, and Cheka. 

 
Table 6. Estimates of hypocenter location for individual studies and combined result. 

No. in 
Hubbell 

et al. 
Table 1 

Source 
No. of 
points 

measured 

Angular 
error s.d. est
from TR 3-

69, deg 

Angular 
error s.d. 
est this 
work, 
deg 

Assumed 
error s.d. of 
coord’s of 
meas. loc's

hypo X hypo Y 

Estimated 
s.d. of error 
in hypo X, 

m 

Estimated s.d. 
of error in 
hypo Y, m

2 Kure Naval Base Team 3 3 4 25 26.639 -178.334 60 60 
3 Arakatsu 3 3 4 25 26.639 -178.334 60 60 
4 Watanabe et al 3 3 4 25 26.645 -178.414 60 60 
5 Kimura & Tajima 7 1 2 15 26.731 -178.393 9 19 
7 Kanai 14 1 5.5 15 26.714 -178.465 25 16.5 

10 Tanaka 5 1 2 25 26.736 -178.412 25 25 
11 Manhattan Engr District 5 1 2 20 26.639 -178.334 22 22 
13 "British" quoted by USSBS 5 1 2 25 26.753 -178.42 25 25 
14 Oughterson-Warren Report 5 1 2 25 26.722 -178.356 25 25 
16 USSBS 6 1 2 20 26.682 -178.405 20 20 

17 US Navy Bureau of Yards & 
Docks 5 1 2 20 26.761 -178.419 22 22 

18 Woodbury & Mizuki 7 1 5.5 15 26.715 -178.418 19 20 

20 First ABCC Hypocenter, 
Wright & Brewer 5 1 2 25 26.675 -178.339 25 25 

22 Arakawa & Nagaoka 37 5 2.3 10 26.716 -178.415 8.3 8.3 
 

 Hypo-center estimate   variance of weighted mean, km2 4.21E-05 7.59E-05 
 This work 26.716 -178.407 standard deviation of wtd mean, km 0.00649 0.008711 
 4 main studies only 26.722 -178.421       
   standard deviation of wtd mean, m 6.489517 8.711441 
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As may be seen in Figure 11, there is a remarkable concordance between the results obtained by 
the methods used here for the reanalysis of the data of Arakawa and Nagaoka and those of Woodbury and 
Mizuki. Both are somewhat south and west of the result of Kimura and Tajima, and somewhat south of the 
combined estimate of Hubbell et al. as given in ABCC TR 3-69 (1969). Kanai’s data remain somewhat 
apart, despite many efforts, beyond what are described in this work, to investigate possible sources of 
error, but it is certainly not established that they represent a statistical outlier. Many of the smaller studies 
shown here are subject to the consideration that, in addition to their large estimated uncertainty based on 
the initial application of the methods suggested here, their results were specified only very inexactly and 
were never intended to be used in an effort such as the present work. Although additional work would 
certainly refine the estimate shown here, it seems likely that the methods and philosophy suggested in this 
work would result in an estimate generally south of the estimate of Hubbell et al., by a few meters to a few 
tens of meters. 

 
Conclusions 

• Modern computationally intensive methods allow new and better solutions to the problems of 
interpreting the original measurement data on the location of the Hiroshima hypocenter, with 
regard to  

o the penumbra problem, and  
o the estimation of the uncertainty in the coordinates resulting from studies for which the 

measured angles and locations are recorded. 
• More statistical research is needed to determine the uncertainty of the results of very small (i.e., 

about three measured locations) studies with undocumented locations and angles, and to decide 
what weight, if any, should be given to such results in a combined analysis. 

• The method of statistical weighting originally suggested by Land in Appendix 1 of ABCC TR 3-
69 is a preferable one and should be used in making combined estimates of the hypocenter 
location based on the results of various studies. 

• Initial results as shown here suggest that estimates of the Hiroshima hypocenter location should be 
generally south of the location given by Hubbell, Jones, and Cheka in ABCC TR 3-69, by roughly 
10 to 25 m. 
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