総合講座 :核の時代

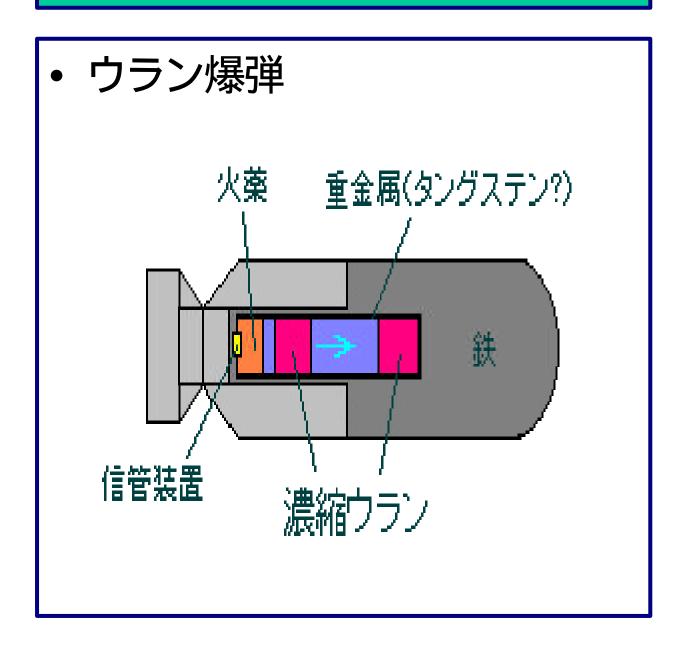
核の軍事利用と 商業利用

川野眞治

京都大学原子炉実験所

Dec. 8 & 15, 2000

桃山学院大


核(物理学)と戦争の20 世紀

- 1985年 レントゲン X線発見
- 物質透過能
- 写真乳剤感
- 透過する際
- 吸収の度合
- 1901年第1回
- X線診断法

世界最初のレントゲン写 …1896年1月撮影

広島型原爆 (リトルボーイ)

核実験禁止条約(1)

- 1963.8.5 米英ソ、部分核実験停止 条約調印
- 1964.10.16 中国原爆実験
- 1968.7.1 米英ソなど核拡散防止条約(NPT)調印
- 1970.1.1 同上発効
- 1972.5 米ソ、第1次戦略兵器削減交渉(SALTI)調印
- 1974.5.18 インド地下核実験
- 1976.6.8 日本NPT調印
- 1979.3.28 米スリーマイル島原発 空焚き事故
- 1979.6 米ソ SALTII調印

核実験禁止条約(2)

- 1986.4.26 チェルノブイリ原発核暴 走事故
- 1987.12 米ソ、中距離核戦力 (INF)全廃条約調印
- 1989.11 ベルリンの壁崩壊
- 1991.7 米ソ、第1次戦略核兵器削減交渉(STARTI)調印
- 1991.12 **ソ**連邦崩壊
- 1993.1 米口、STARTII調印
- 1995.5.11 国連NPT再検討・延長 会議、無期限延長を決める
- 1998 インド・パキスタン核実験

広島型原爆 (リトルボーイ)

総重量 4トン

全長 3メートル

ウラン235 60 kg

爆発威力 15 kton (TNT火薬換算)

爆発効率 1.4%

(核反応したのはわずかこれだけ)

起爆方法 砲身型

(濃縮ウランを打ち出して1つに)

爆発するのがわかっていたので実験されずに投下

核兵器開発史年表(1)

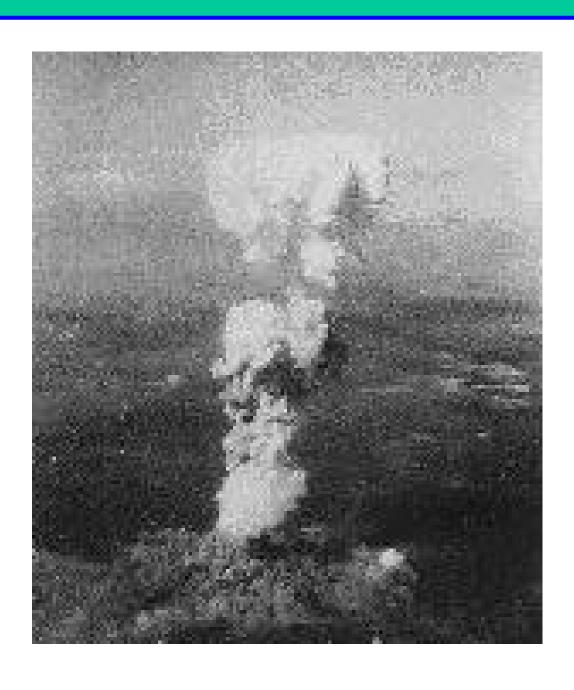
1789	クラプロート (独) ウラニウムを発見
1895	レントゲン (独) X線を発見
1896	ベックレル(仏)ウラン鉱に放射能発見
1898	キュリー夫妻 (仏) ラジウムの発見
1908	ラザフォード(英)/ガイガー(独)計数管を作成
1913	ボーア(デンマーク)「原子模型及び原子スペクトルの量子論」
1915	アインシュタイン(独)「一般財団性理論」
1915	ゾンマーフェルト (独) スペクトル線の微細構造を説明するためにボーアの原子模型を拡張
1922	ライプチヒ大学でのアインシュタインの講演会中止
1925	パウリ (スイス) パウリの排他原理
1925	ハウシュミット / ウーレンベク (蘭) 電子のスピン
	(自己回転運動量)の導入
ハイゼンベルク (独) 運動学的および力学的諸関係の量子論 的解釈:行列力学	
1926	シュレーディンガー(オーストリア)波動方程式
1927	ハイゼンベルク(独)不確定性原理

ローレンス / リヴィングストン (米) サイクロトロンの発明

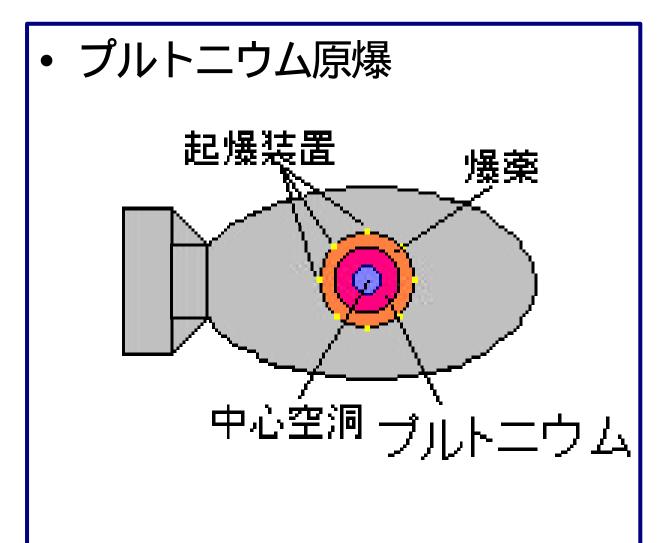
1930

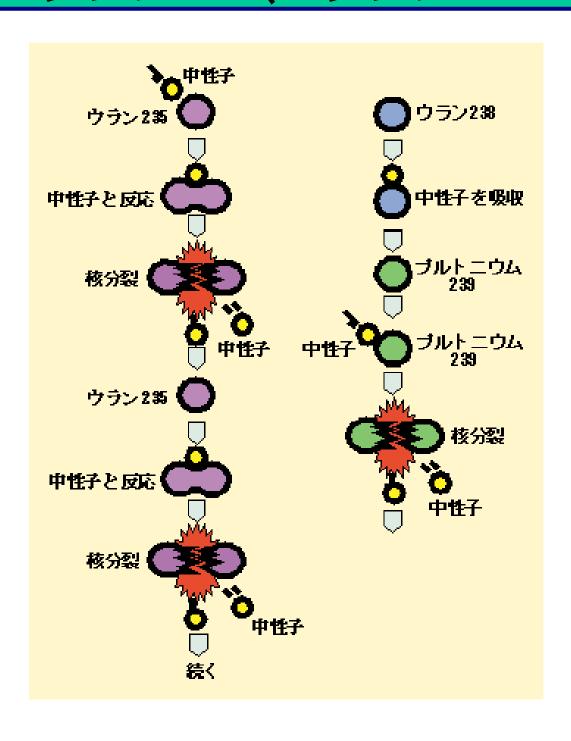
核兵器開発史年表(2)

- 1932 チャドウィック(英)中性子の発見
- 1933 1.30 ヒトラー、ドイツ首相に就任
- 1933 4 独、ユダヤ人を公職から追放
- 1934 ジョリオ キュリー夫妻 (仏)人工放射能の発見
- 1934 フェルミ (伊) 中性子による原子核の人工変換
- 1937 **ワイツゼッカー** (独)太陽熱源の原子核反応説
- 1938 ハーン/シュトラスマン(独)ウランの原子核分裂を発見 ウランを中性子で衝撃すると、質量が約半分のバリウムの 同位元素ができることを確認
- 1938 フェルミ、ノーベル物理学賞受賞、アメリカへ亡命
- 1938 12 リーゼ・マイトナー/オットー・フリッシュ核分裂とエネルギー放出を解明
- 1939 8.2 アインシュタイン、ルーズベルトへの手紙に署名 (起草はシラード)
- 1939 9.1 独、ポーランドに侵攻
- 1939 9.16 独、ウラン委員会発足、第1回会合。
- 1939 9.26 独、ウラン委員会、第2回会合。ハイゼンベルク出席。
- 1939 10.21 米、ウラン諮問委員会第1回会合。
- 1940 4.10 英、核分裂軍事利用委員会設置(暗号名MAUD委)
- 1940 5独、ノルウェーの重水工場を入手
- 1940 6.27 米、ブッシュを委員長とする国防調査委員会(NDRC) を創設


核兵器開発史年表(3)

- 1941 5 **ローレンス(米) U-238の利用とプルトニ** ウムによる核分裂連鎖反応の可能性を示唆
- 1941 12.8 日本軍、ハワイを空襲
- 1942 1.31 米、シカゴ大学に冶金研究所を設置。
- 1942 8.13 米、技術本部内に新しいマンハッタン 管区を作り、特殊任務(原子爆弾)を担当。 防諜 上DSM計画(Development of Substitute Material) と称す
- 1942 12.2 シカゴ大学の冶金研究所で最初の原 子核連鎖反応パイルが作動
- 1943 3.15 **ロスアラモス研究所にオッペンハイマー** 所長着任
- 1945 7.16 ニューメキシコ州アラモゴード空軍基地 でプルトニウム原子爆弾の実験
- 1945 8.6 午前9時15分30秋、広島にウラン爆 弾をB29(エノラ-ゲイ号)から投下
- 1945 8.9 長崎にプルトニウム爆弾投下


1945年7月16日 Trinity Test (Nevada)


1945年8月6日広島

長崎型原爆(ファットマン)

プルトニウム239 ウラン235、ウラン238

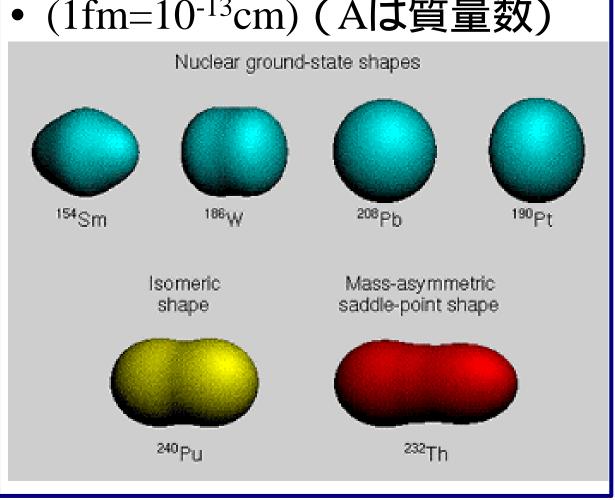
長崎型原爆(ファットマン)

総重量

約4.5 ton

全長

3.25 m


プルトニウム239

8 kg

- 爆発威力 22 kton (TNT火薬換算)
- 爆発効率 15%
- (核反応したのはこれだけ)
- ・ 起爆方法 爆縮型 (周囲からの爆発により圧縮)
- 事前に核実験、後に投下
- 1945年7月15日アラモゴード

原子核の形

- 半径は1.2×A fm
- (1fm=10⁻¹³cm) (Aは質量数)

核実験

- 1945年7月、ニューメキシコ州アラモゴード で史上初の核実験
- 49年には旧ソ連が成功し、米ソ間で核兵 器開発競争開始
- 63年に大気圏や水中での核実験を禁じる 部分的核実験停止条約(63年)発効 しか し地下核実験続行
- 96年9月に国連総会であらゆる核実験を禁 止する核実験全面禁止条約(CTBT)採択
- 地下核実験を強行したインドは74年に初の核実験。「核兵器造能力は持つが、保有はしない」との政策を掲げ、「核実験を数多く行い核兵器能力を向上させた米英仏中露の5大国に有利な条約だ」と条約に署名していない。
- 岐路に立つCTBT: 今後、5大国に反発する 国が核兵器開発を進める可能性

包括的核実験禁止条約 (CTBT)

あらゆる核兵器の実験的爆発 (大気圏内、宇宙空間、水中及び地下での核爆発実験含む) 及びその他の核爆発を禁止した条約。1996年、国連総会で 採択された。その背後には、る いこれた。その背後には、る いこれではよって核兵力 とコンピュータによる とコンピュータによる とコンピュータによる とコンピュータによる とこれではまます。 といる。インドはこの点を指摘 したうえでCTBT加盟を拒否

臨界前核実験

- 核爆発を起こさずに核爆弾の性能 を調べる実験
- 臨界前核実験では、高性能火薬を 爆発させてプルトニウムに衝撃波を 当て核分裂を起こすが、プルトニウムの量や温度を調整して、臨界に 達しないようにする。
- 最近(98年4月)、米国がネバタ州の核実験場で3回目の実験を行い、すべての核兵器実験と爆発を伴うあらゆる核実験を禁止したCTBT(核兵器全面禁止条約)に違反すると議論を呼ぶ。米国は「臨界前核実験はCTBTの対象外」と主張
- 反核団体などは、臨界前核実験は CTBTの下でも核戦力を維持する 「抜け道」と批判

トリチウム

- 核融合爆弾(水爆)の原料のひとつ水 素の放射性同位体で原子核が陽子1 個と中性子2個でできている。3重水素と もいう。海水や空気中にもわずかにあ るが、大量に必要な場合は、原子炉で 作る。
- 米国はトリチウム生産を1988年に中止、 しかし核戦略上に必要として、再生産を 計画
- 計画では、第2次世界大戦時に原爆の原料を製造した「ハンフォード核施設」の高速増殖炉を利用する予定。しかし、同施設は放射性廃棄物のズサンな管理から環境汚染を招いたため、現在も浄化作業が続いている。再生産計画に対し、米の環境保護団体が、一斉に反発。「核兵器製造に逆戻りすることは許されない」と抗議している。

パキスタン核実験強行! 1998年5月29日

- パキスタン、先に核実験を強行したインドの脅威に対抗して5回にわたる地下核実験を強行(日本を含む世界各国から強い自粛要請にも耳を貸さず)
- 世界中の核廃絶への努力が一気に崩壊へ。これを機会に第3国が次々と核保有を鼓舞しだすであるう。
- 広島長崎以外に決して核爆弾の被害をつくってはいけない。
- 核保有国が核爆弾の実験を阻止できない現状では、核保持の優位性という神話も崩れた。
- こんな時こそ被爆国日本が声を大にして叫ぶときである。「原爆は恐ろしい兵器であると!・・・・」(しかし、外交的に信頼がない)

戦後の核兵器

1946年7月1日、米国太平洋マー シャル群島のビキニ環礁で戦後初 の原爆実験。米国の用済みの艦船 や旧日本海軍の戦艦など75隻の上 空でさく裂させた。実験に同行した UP通信記者は「あたかも数十個の 爆弾がことごとく赤紫色に光を発し て一時に爆発したかと思われ、続 いて先の3倍も激しい2回目の爆発 が起こった。セン光と巨大な桃色の 煙となって現場から18マイル(29キ 口)も隔たった我々さえ幻惑させた」 と書いている。これが戦後の核軍 拡競争のスタートとなった。

新たな核保有国

1949年9月23日、米国のトルーマ ン大統領は、ソ連の核保有を特 別声明で発表。「われわれは過 去数週間以内に原子爆発が行 われた証拠を持っている」という コメント。ソ連が実験をしたのは8 月29日だったと云う 戦後間もな い時期から国連などの場では原 子力の国際管理が強調されてき たが、答えが出る前の核拡散の 1撃であった。続いて英国が1952 年10月3日、フランスが1960年2 月13日、中国が1964年10月16日 に核保有国となる。

核戦争の「道具」

- 広島、長崎では、原爆を爆撃 機から投下する方法
- 核爆弾とそれを運ぶ爆撃機や ミサイルが、核戦争を戦うため の一番基本的な道具
- ・米国は最初、ナチスドイツが持つ前に核兵器を開発しようとした。つまり、まだ核兵器を持たない国が「やがて持つ可能性への恐怖」に開発の動機があった。

「核抑止」の戦略

- ・ 米国が持つ核兵器への恐怖から 持たない国の戦争を抑止する
- ・米国の核独占は数年で破綻、価値 観や政治体制の違う複数の国が核 兵器を持つ時代
- 「核抑止」効果を維持するために、 戦略家たちは核戦争の「道具」をよ り高度により多角的に組み立てて いった。
- 相手も同じ開発の動機を持ち、1国が「道具」の水準を上げれば相手も負けまいとし、「可能性への恐怖」も加わって、とめどない核兵器体系の巨大化、核軍拡競争に突進

第五福竜丸の被災

- 1954年3月1日、焼津市のマグロ漁船「第五福竜丸」(99トン、乗組員23人)、太平洋マーシャル諸島のビキニ環礁で米国の水爆実験の死の灰を浴びる
- 14日に帰港した乗組員2人、原爆症 を示し、翌日東大付属病院に入院。 水揚げしたマグロ、船体、漁具から 放射線検出
- 9月23日、放射線障害で入院していた た久保山愛吉無線長死亡
- 核実験の「死の灰」やまず、太平洋の島々、米国、ユーラシア大陸、オーストラリアの砂漠の実験場周辺で、次々に核被害者をつくり出した

水素爆弹

- 1952年11月1日、米国、太平洋工二 ウェトク環礁で初の水爆実験
- 水爆はウランの核分裂反応で生じる超高温を利用してリチウム、トリチウム、重陽子などに核融合反応を起こさせるもの
- その威力は1発で広島、長崎型原 爆の100倍以上
- ソ連は1953年8月、英国は1957年5月、中国は1967年6月、フランスは1968年8月、相次いで水爆実験
- 単位:メガトン=100万トン

熱核融合爆弾(水爆)の 原理

- 核融合:軽い核が2個結合して1個の核を作るような核反応。この反応を短時間に起こすようにしたのが熱核融合爆弾(水爆)で、水素原子同士の反応なので水素爆弾
- 核融合が起こるためには高温(500万度 5億度)・高密度が必要。水 爆ではこの条件を得るために、起 爆に原爆を使う
- 1952年11月1日、エニウェトク環礁 で最初の水爆実験
- 広島型原爆の約700倍、10Mtの脅 威的な威力

熱核融合爆弾(水爆)の 構造

核分裂(F)核融合(F)核分裂(F)

- Li + n He + T + 熱
- D + T He + n + 熱
- 結果として
- Li + D 2He + 熱

< 図略 >

日本の原子力発電所

(略)

原子力施設での過去の主な事故(1)

- 1952年 12月12日 カナダ
- ・ オンタリオ州チョークリバー重水減速・軽水冷却型の試験原子炉NRXで原子炉が暴走、燃料棒が溶融。 制御ミスが原因
- 1957年 10月10日 イギリス
- セラフィールドのプルトニウム生産 用のウィンズケール炉で減速材の 黒鉛が燃え、燃料棒が破損。
- 周辺牧草地帯の汚染、牛乳1ヶ月 以上出荷停止、作業員14人被爆 出力計測装置不備と運用ミス

原子力施設での過去の主な事故(2)

- 1961年 1月3日 アメリカ
- アイダホ州国立原子炉試験場沸騰 水型軽水炉SL-1が修理中爆発、放 射能で作業員3人死亡、事故直後 の原子炉制御室の扉付近の空間 線量率は毎時2-3ミリシーベルト、 制御棒の誤操作が原因らしい
- 1966年 10月5日 アメリカ
- ミシガン州ラグーナビーチの高速増 殖炉フェルミ1号炉、核分裂性ガス 建物内空気汚染、原子炉は自動停 止、冷却流路閉塞で燃料溶融

原子力施設での過去の主な事故(3)

- 1979年 3月28日 アメリカ
- ペンシルベニア州スリーマイル島加 圧水型原発で、炉心冷却失敗、炉 心半分溶融、放射能漏れ、周辺住 民避難、事故炉はまだ汚染された まま。原因は給水ポンプ故障と安 全装置操作ミス
- 1981年 3月8日 日本
- 福井日本原電敦賀発電所、大量の放射性廃液放出。ろ過廃液貯留棟床のひび割れ、バルブ閉め忘れなど操作ミス。日本原電、この年1-4月3件の冷却水、排水漏れを「事故隠し」、海産物暴落
 おおります。
 おおりまする。
 おおりまする。
 おおりまする。
 おおりまする。
 おおりまする。
 おおります。
 おおりまする。
 おまるままする。
 おおりままする。
 おおりまする。
 おおりまする。

原子力施設での過去の主な事故(4)

- 1986年 1月6日 アメリカ
- オクラホマ州ゴアのカーマギー社ウラン燃料加工工場 タンク破壊で六フッ化ウラン漏出、作業員1人死亡、多数入院。計器故障で六フッ化ウランをタンクに詰め過ぎ、超過分を気体に戻そうと作業員がタンクごと加熱したのが原因
- 1986年 4月26日 旧ソ連
- チェルノブイリ原発炉心暴走事故 運転手順違反、制御棒設計ミス 従業員31名死亡、リクビダートル数 万人、半径30km地域住民およそ13 万5千人避難 ヨーロッパ諸国広範 な放射能汚染

原子力施設での過去の主な事故(5)

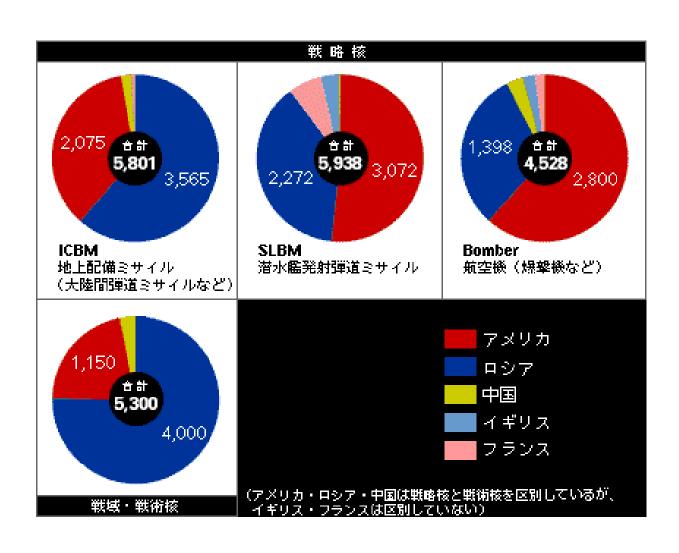
- 1995年12月5日、日本 敦賀
- 高速増殖炉「もんじゅ」ナトリウム漏れ、火災、事故隠し、虚偽報告
- 1997年 3月11日 日本
- 東海村旧動燃、低レベル放射性物質をアスファルト固化施設、火災 8時間後爆発 35人被曝、環境に放射線放出。
- 1999年9月30日 日本 東海村
- JCO核燃料転換工場臨界事故
- 従業員2名重被曝で死亡、周辺住 民の避難行動

核兵器体系

- 核兵器(爆弾 弾頭)、運搬手段、誘導装置など
- C³I(Command, Control, Communication, Intelligence)
- 原爆 水爆(圧倒的な威力)
- 小型化と中性子爆弾
- 1960年代以降特に進展、中性子爆弾:放射線強化弾頭、熱線と爆風の威力を小さくした代わりに、中性子の量を大きくした放射線殺人兵器

戦略核兵器と戦域核

- 爆発威力大きい: 戦略核、小さいもの: 戦域・戦術核
- 戦略核兵器: 敵本国を直接攻撃、大陸間弾道ミサイル (ICBM)、潜水艦発射弾道ミサイル(SLBM)、戦略爆撃機に搭載
- 戦域核: 射程や航続距離の短い、敵本土以外の目標を攻撃する、中距離弾道ミサイル (IRBM)、準中距離弾道ミサイル(MRBM)、中距離爆撃機に搭載


戦術核兵器 戦場核

- ・ 戦術核兵器: さらに短い射程 のミサイル(SRBM) その他に 装備されたもの、極めて豊富で、 戦闘爆撃機搭載の核爆弾、空 対地・空対空・地対空の各種ミ サイル、陸海軍用核砲弾、核 魚雷、核爆雷、核地雷等々、あ らゆる分野で通常兵器と並ん で装備
- 戦場核:核地雷や核砲弾 SRBMなど

核兵器の小型化 中性子爆弾

- 1960年代以降特に進展、核兵器の小型化。一例は、レーガン政権下で脚光を浴びた中性子爆弾。中性子爆弾は正式には放射線強化弾頭といい、熱線と爆風の威力を小さくした代わりに、中性子の量を大きくした放射線殺人兵器である。
- 核兵器のなお一層の小型化 1キロトン以下、さらには10 100トン以下のミニニューク、マイクロニュークの開発で、それは未臨界核実験とも無関係ではないといわれている。

世界の核兵器の数

核兵器の運搬手段

- ICBM: 大陸間弾道ミサイル(Inter Continental Ballistic Missile, ICBM) は、6,400キロメートル以上の射程、通常は1万キロメートル前後の射程をもち、水爆弾頭を装備した地上発射のミサイル
- SLBM: 潜水艦発射弾道ミサイル (Submarine Launched Ballistic Missile, SLBM)
- 原子力潜水艦:原子力潜水艦には、 核魚雷を装備して相手の水上艦艇 や原子力潜水艦を狙う攻撃型原潜 (SSN)
- 戦略爆撃機:
- MIRV、IRBM / MRBM / SRBM、 巡航ミサイル

エジプト: ムバラク大統領が核兵器 開発を示唆

- 毎日新聞1998年10月5日
- ・「核兵器が必要な時が来れば 我々は開発に躊躇しない」と明 言、「核開発に必要な設備の 入手が容易になった。それらを 買うのもたやすい。すでにエジ プトは原子炉を持っており、非 常に有能な専門家もいる」と述 べた。(1995年5月の核不拡散 条約(NPT)再検討・延長会議)

核実験禁止条約(1)

- 1963.8.5 米英ソ、部分核実験停止 条約調印
- 1964.10.16 中国原爆実験
- 1968.7.1 米英ソなど核拡散防止条約(NPT)調印
- 1970.1.1 同上発効
- 1972.5 米ソ、第1次戦略兵器削減交渉(SALTI)調印
- 1974.5.18 インド地下核実験
- 1976.6.8 日本NPT調印
- 1979.3.28 米スリーマイル島原発 空焚き事故
- 1979.6 米ソ SALTII調印

核実験禁止条約(2)

- 1986.4.26 チェルノブイリ原発核暴 走事故
- 1987.12 米ソ、中距離核戦力 (INF)全廃条約調印
- 1989.11 ベルリンの壁崩壊
- 1991.7 米ソ、第1次戦略核兵器削減交渉(STARTI)調印
- 1991.12 **ソ**連邦崩壊
- 1993.1 米口、STARTII調印
- 1995.5.11 国連NPT再検討・延長 会議、無期限延長を決める
- 1998 インド・パキスタン核実験

日本も核武装すべきだ

• 1965年1月、佐藤栄作首相訪 米時 64年10月の中国核実験 を受けてのラスク長官への発 言、「一個人として佐藤は、中 国共産党政権が核兵器を持つ なら、日本も持つべきだと考え ている。しかしこれは日本の国 内感情とは違うので、極めて私 的にしか言えないこと。

米国家安全保障会議録草稿から(1998年 5月25日沖縄タイムス朝刊)