VIII-Ⅱ-1. Project Research

Project 11
OBJECTIVES AND RESEARCH SUBJECTS: Recently high-energy and high-intensity accelerators have been developed. They are widely used for many fields such as physics, chemistry and cancer therapy. The high-energy proton accelerators produce high-energy primary and secondary hadron particles, and a variety of radionuclides are formed through nuclear reactions including spallation reactions in high-energy accelerator facilities. The activation takes place in accelerator hardware, air, cooling water and other materials such as soil outside of shielding concrete walls.

From the viewpoints of radiation safety and safe accelerator operation, the management of the formed radionuclides is very important. The behavior and property of the radionuclides is the most important information to estimate radiation exposure and to ensure the accelerator safety.

In this work, the behavior and property was investigated in the air of the accelerator rooms and the cooling water. In addition, problems concerning activation in accelerator facilities were also investigated to obtain correct estimation of amount of the radionuclides formed in air and accelerator hardware.

The following problems are studied in this work.
1. The property of radioactive airborne species (radioactive aerosols and radioactive gases) in the air.
2. The behavior of dissolved metals from cooling water tubes and radioactive nuclides formed in the water.
3. Problems related to activation in accelerator facilities such as development of new radiation detectors for high energy accelerators and measurement of formation cross section of the principal radionuclides for dose estimation.

The participating research subjects (PRS) in Fiscal 2012 and co-workers in each subject are listed below.

PRS-1 (24P11-1) Difference of number and radioactivity size distribution of airborne aerosols formed in target room depending on beam currents
(S. Yokoyama, Y. Oki and S. Sekimoto)

PRS-2 (24P11-2) Measurement of Radioactive Airborne Nuclides in an FFAG Accelerator

PRS-3 (24P11-3) Corrosion of Metals and Colloid Formation in Water under Intense Radiation Field

MAIN RESULTS:

PRS-1
Radioactive size distribution and radioactivity of airborne aerosols formed on different beam current intensity in the target room of the electron linear accelerator in KURRI were estimated. The size distribution was measured with a scanning mobility particle sizer (SMPS) and a low pressure impactor. The size dependence on beam current was discussed for both of 13N-bearing aerosol particles and non-radioactive aerosol particles.

PRS-2
An air irradiation experiment was performed for the first time in an FFAG proton accelerator in order to study the property of the radiation-induced radioactive airborne nuclides. The radioactivity and the number of the particles were measured. Preliminary results obtained in the first irradiation experiment were reported.

PRS-3
Metallic copper (Cu) contacted with water were irradiated with γ-rays in the 60Co irradiation facility in KURRI, bremsstrahlung, or neutrons in the electron linac, as a model environment inside accelerator facilities. Radiation effects on corrosion of Cu in water and formation of colloidal Cu species were observed.

In addition, a new radiation monitor for burst neutron field was tested under a burst neutron field that was generated using a Ta target bombarded with electrons from the linac. The monitor has been developed to measure dose rate from beam loss of a pulse-mode accelerator to prevent activation accelerator hardware.
INTRODUCTION: Radioactive aerosols are formed by beam irradiation around a beam line and in a target room of accelerator facilities. The inhalation of the radioactive aerosols may result in internal exposure for accelerator maintenance workers. The radioactive size distribution of aerosols is important factor to estimate internal dose. The time variations of number size distribution and formation mechanism of airborne aerosols formed in the accelerator facilities were investigated in the past studies [1-3]. In this study, radioactive size distribution and radioactivity of airborne aerosols formed on different beam current intensity in the target room were estimated.

EXPERIMENTS: In the target room of KUR-LINAC, a water cooled Ta target was irradiated with 30MeV electrons beam with currents of 20, 50, 80, 100 and 120 μA for about 2 hours per experiment and neutrons were generated. The number-size distribution of airborne aerosols formed in the target room was measured continuously by SMPS (Model Series 3936, Tokyo Dylec corp.) during the experiments. The radioactivity-size distribution of aerosols was collected by a low pressure cascade impactor (Tokyo Dylec corp.) from 60 to 90 minutes after irradiation start. The radioactivity of aerosols collected on each stage of the cascade impactor were measured by an automatically α and β particles detector (JDC-5300, Hitachi Aloka Medical, Ltd). The aerosols were collected by filter and detected by BGO scintillation counter. As this result, it was found that 13N made a large contribution to total activity. The radioactivity-size distribution of aerosols was also estimated by using the measured number-size distribution of aerosols and the attachment coefficient of 13N.

RESULTS: As shown in Fig. 1, the number-size distribution of aerosols had two peaks. The second large peak was observed at 110-140nm diameters independently of the beam currents. The peak of measured activity size distribution of aerosol was also appeared at 230-260nm diameters regardless of the beam currents although the distribution had only a single peak (Fig. 2). Total measured radioactivity of aerosols was linearly proportional to beam current. It is considered that the growth of radioactive aerosols is avoided even if the amount of generated aerosols is large because the formed radioactive aerosols diffuse sufficiently in the target room. Fig. 3 shows measured and calculated activity size distribution of aerosols on beam currents of 20 and 100μA. The calculated distribution on the beam current of 20 and 100μA had peaks at 133 and 152 nm diameters, respectively.

REFERENCES:
INTRODUCTION: In accelerator facilities, radioactive airborne species are formed in air of the accelerator rooms during machine operation. Oxygen-15 (half life: 2 min), 13N (10 min) and 11C (20 min) are principal radionuclides in the air [1]. In addition, 7Be (half life: 53 d) is also formed through nuclear spallation reactions from air in high-energy proton accelerators. The 7Be atoms in air in the accelerator rooms are observed as aerosol particles; however, 15O, 13N and 11C exist in both states of gas molecules and the aerosol particles. Their states are very important information on accelerator radiation safety management.

In this work, an air irradiation experiment was performed for the first time in an FFAG proton accelerator in order to study the property of the radiation-induced radioactive airborne nuclides. The radioactivity and the number of the particles were measured. Preliminary results obtained in the first irradiation experiment are described below.

EXPERIMENTS: The irradiation experiment was carried out in the 150-MeV FFAG (Fixed Field Alternating Gradient) Proton Accelerator of Research Reactor Institute, Kyoto University (KURRI). In the FFAG accelerator system, an 11-MeV H–ion beam is injected to the FFAG main ring by the H– linear accelerator. Protons are accelerated to 150 MeV after conversion of H– ions to protons. The specimen irradiation beam line, one of the extraction beam lines of the main ring was used for air-irradiation. The air-irradiation chamber was installed at the end of the specimen irradiation beam line before the beam dump. The chamber was a 1-m long stainless steel cylinder with the internal diameter of 15 cm. The beam pipe and the chamber were separated with a 1-mm thick Al plate. The aerosol-free air was introduced to the chamber at the flow rate of 20 L/min, and the irradiated air was sampled from the chamber. Fig. 1 shows the irradiation chamber together with the specimen irradiation beam line and the FFAG main ring.

The activity of the sampled air was measured with a 1.5-L ionization chamber after removing aerosol particles by filtration. The fluctuation of the beam intensity was monitored using this ionization chamber measurement. The radiation-induced aerosol particles in the air were collected on a PTFE membrane filter (pore size: 0.45-µm). The γ-spectra of the filters were measured with Ge detectors. In addition, the 511-keV annihilation γ-rays from the positron emitters were measured with a coincidence system of two bismuth germanate (BGO) scintillators.

The number concentration of the aerosol particles formed in the irradiated air was counted with a Condensation Particle Counter (CPC) (TSI Inc., Model 3025A).

RESULTS AND DISCUSSION: Dense aerosols are observed in the irradiated air. The number concentration exceeded the upper detection limit of the CPC (105 particles/cm3). The 511-keV annihilation peak due to the positron emitters and the 7Be peak of 478 keV were observed in the γ-spectrum of the collected aerosols. The decay curve of the annihilation peak was fitted to the principal positron emitters by a least-squares method. The radionuclide formed in air in the bremsstrahlung irradiation in the electron linac of KURRI was almost 13N at the time of measurement [2]; however, 11C was observed in addition to 15O and 13N in the proton irradiation. From the viewpoint of radiation safety, attention should be paid to the formation of 11C whose half life is longer than other positron emitters.

Dense aerosol particles supplied at the constant flow rate are useful for calibration of size-measuring instruments for aerosol particles. Because stable production of fine particles (nano- and sub-micron particles) is more difficult than micron-order particles, devices that easily produce the fine particles can be employed for calibration of aerosol-measuring instruments for the fine particles. This air-irradiation system in the proton accelerator can be applied to the particle production device for the fine particle calibration by combining with a Differential Mobility Analyzer (DMA) that separates particles of desired size range from the radiation-induced particles.

REFERENCES:
PR11-3 Corrosion of Metals and Colloid Formation in Water under Intense Radiation Field

K. Bessho, H. Matsumura, Y. Oki1, N. Akimune2, S. Sekimoto3, M. Hagiwara, K. Iijima, T. Sanami, K. Masumoto, J. Hori1 and N. Abe1

Radiation Science Center, KEK
1Research Reactor Institute, Kyoto University
2Graduate School of Engineering, Kyoto University

INTRODUCTION: At high-intensity accelerator facilities, intense radiations affect chemical states of elements inside the facilities. In the cooling-waters for various components, formation of metal related colloids in water is one of the important subjects in the radiation managements. In this work, metallic copper (Cu) contacted with water were irradiated by γ-rays, bremsstrahlung, or neutrons, as a model environment inside accelerator facilities. Radiation effects on corrosion of Cu in water and formation of colloidal Cu species were studied.

EXPERIMENTS: Cu vessels (I. D. 19 x 75 mm) filled with pure water were irradiated by γ-rays generated at the 60Co γ-ray irradiation facility, or bremsstrahlung and neutrons generated by 30 MeV electron beam hitting on a Ta target (950 x 62 mm) at the electron linear accelerator (LINAC). Samples at LINAC experiments were fixed at the downstream position (80 mm from Ta target) and perpendicular position (80 mm from Ta target).

After the irradiations, water samples in Cu vessels were poured out and treated with four kinds of ultrafiltration (UF) units for particle size separation. Estimated pore sizes of the UF units were 200, 16, 7 and 3 nm. Concentrations of Cu in the filtrates and unfiltered samples were determined by ICP-AES analyses.

RESULTS: Figure 1 (a) and (b) show soluble and colloidal concentrations of Cu in water as a function of reaction time. The data for LINAC experiments were obtained at the downstream sample position where flux of neutrons can be neglected. Therefore, Fig. 1 shows the effects of photon irradiation, and it demonstrates that irradiation of high-energy photons affects the corrosion of Cu and colloid formation in water phase.

Concentration of soluble Cu species increased at photon irradiations. In γ-ray irradiation at the dose rate of 2.5-2.9 kGy/h, soluble Cu concentration increased with reaction time and reached to a plateau concentration of 0.6 mg/L. At the dose rate of 19-22 kGy/h, a plateau concentration of soluble Cu was 1.7 mg/L. In the LINAC experiments, soluble Cu concentration also increased with irradiation times. These results imply that dissolution of Cu progresses under intense photon field and finally reaches to plateau concentrations dependent on the photon intensity and/or energy.

Formation of colloidal Cu species was also noticeable under intense photon field. In contrast with soluble fractions, colloidal Cu concentration quickly reached to plateau within 2 h. More comprehensive analyses and discussion are in progress.

RADIATION MONITOR FOR BURST NEUTRONS: A radiation monitor for burst neutron field has been developed to measure dose rate from beam loss of a pulse-mode accelerator [1]. The monitor, which consists of a 3He proportional counter, equipped with bremsstrahlung, or neutrons, as a model environment inside accelerator facilities. Radiation effects on corrosion of Cu in water and formation of colloidal Cu species were studied.

REFERENCES: